Project description:Most proteins, such as ion channels, form well-organized 3D structures to carry out their specific functions. A typical voltage-gated potassium channel subunit has six transmembrane segments (S1-S6) to form the voltage-sensing domain and the pore domain. Conformational changes of these domains result in opening of the channel pore. Intrinsically disordered (ID) proteins/peptides are considered equally important for the protein functions. However, it is difficult to explore the structural features underlying the functions of ID proteins/peptides by conventional methods, such as X-ray crystallography, because of the flexibility of their secondary structures. Unlike voltage-gated potassium channels, families of small- and intermediate-conductance Ca(2+)-activated potassium (SK/IK) channels with important roles in regulating membrane excitability are activated exclusively by Ca(2+)-bound calmodulin (CaM). Upon binding of Ca(2+) to CaM, a 2 × 2 structure forms between CaM and the CaM-binding domain. A channel fragment that connects S6 and the CaM-binding domain is not visible in the protein crystal structure, suggesting that this fragment is an ID fragment. Here we show that the conformation of the ID fragment in SK channels becomes readily identifiable in the presence of NS309, the most potent compound that potentiates the channel activities. This well-defined conformation of the ID fragment, stabilized by NS309, increases the channel open probability at a given Ca(2+) concentration. Our results demonstrate that the ID fragment, itself a target for drugs modulating SK channel activities, plays a unique role in coupling Ca(2+) sensing by CaM and mechanical opening of SK channels.
Project description:Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway.
Project description:A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway. The disorder-to-order regulatory switch in DNA recognition by natively disordered CytR therefore operates through a dynamical variant of the lock-and-key mechanism where the structurally complementary conformation is transiently accessed via thermal fluctuations.
Project description:Red fluorescent proteins (RFPs) derived from organisms in the class Anthozoa have found widespread application as imaging tools in biological research. For most imaging experiments, RFPs that mature quickly to the red chromophore and produce little or no green chromophore are most useful. In this study, we used rational design to convert a yellow fluorescent mPlum mutant to a red-emitting RFP without reverting any of the mutations causing the maturation deficiency and without altering the red chromophore's covalent structure. We also created an optimized mPlum mutant (mPlum-E16P) that matures almost exclusively to the red chromophore. Analysis of the structure/function relationships in these proteins revealed two structural characteristics that are important for efficient red chromophore maturation in DsRed-derived RFPs. The first is the presence of a lysine residue at position 70 that is able to interact directly with the chromophore. The second is an absence of non-bonding interactions limiting the conformational flexibility at the peptide backbone that is oxidized during red chromophore formation. Satisfying or improving these structural features in other maturation-deficient RFPs may result in RFPs with faster and more complete maturation to the red chromophore.
Project description:Controlling excited-state reactivity is a long-standing challenge in photochemistry, as a desired pathway may be inaccessible or compete with other unwanted channels. An important example is internal conversion of the anionic green fluorescent protein (GFP) chromophore where non-selective progress along two competing torsional modes (P: phenolate and I: imidazolinone) impairs and enables Z-to-E photoisomerization, respectively. Developing strategies to promote photoisomerization could drive new areas of applications of GFP-like proteins. Motivated by the charge-transfer dichotomy of the torsional modes, we explore chemical substitution on the P-ring of the chromophore as a way to control excited-state pathways and improve photoisomerization. As demonstrated by methoxylation, selective P-twisting appears difficult to achieve because the electron-donating potential effects of the substituents are counteracted by inertial effects that directly retard the motion. Conversely, these effects act in concert to promote I-twisting when introducing electron-withdrawing groups. Specifically, 2,3,5-trifluorination leads to both pathway selectivity and a more direct approach to the I-twisted intersection which, in turn, doubles the photoisomerization quantum yield. Our results suggest P-ring engineering as an effective approach to boost photoisomerization of the anionic GFP chromophore.
Project description:Porins are β-barrel outer-membrane proteins through which small solutes and metabolites diffuse that are also exploited during cell death. We have studied how the bacteriocin colicin E9 (ColE9) assembles a cytotoxic translocon at the surface of Escherichia coli that incorporates the trimeric porin OmpF. Formation of the translocon involved ColE9's unstructured N-terminal domain threading in opposite directions through two OmpF subunits, capturing its target TolB on the other side of the membrane in a fixed orientation that triggers colicin import. Thus, an intrinsically disordered protein can tunnel through the narrow pores of an oligomeric porin to deliver an epitope signal to the cell to initiate cell death.
Project description:Intrinsically disordered proteins (IDPs) refer to those proteins without fixed three-dimensional structures under physiological conditions. Although experiments suggest that the conformations of IDPs can vary from random coils, semi-compact globules, to compact globules with different contents of secondary structures, computational efforts to separate IDPs into different states are not yet successful. Recently, we developed a neural-network-based disorder prediction technique SPINE-D that was ranked as one of the top performing techniques for disorder prediction in the biannual meeting of critical assessment of structure prediction techniques (CASP 9, 2010). Here, we further analyze the results from SPINE-D prediction by defining a semi-disordered state that has about 50% predicted probability to be disordered or ordered. This semi-disordered state is partially collapsed with intermediate levels of predicted solvent accessibility and secondary structure content. The relative difference in compositions between semi-disordered and fully disordered regions is highly correlated with amyloid aggregation propensity (a correlation coefficient of 0.86 if excluding four charged residues and proline, 0.73 if not). In addition, we observed that some semi-disordered regions participate in induced folding, and others play key roles in protein aggregation. More specifically, a semi-disordered region is amyloidogenic in fully unstructured proteins (such as alpha-synuclein and Sup35) but prone to local unfolding that exposes the hydrophobic core to aggregation in structured globular proteins (such as SOD1 and lysozyme). A transition from full disorder to semi-disorder at about 30-40 Qs is observed in the poly-Q (poly-glutamine) tract of huntingtin. The accuracy of using semi-disorder to predict binding-induced folding and aggregation is compared with several methods trained for the purpose. These results indicate the usefulness of three-state classification (order, semi-disorder, and full-disorder) in distinguishing nonfolding from induced-folding and aggregation-resistant from aggregation-prone IDPs and in locating weakly stable, locally unfolding, and potentially aggregation regions in structured proteins. A comparison with five representative disorder-prediction methods showed that SPINE-D is the only method with a clear separation of semi-disorder from ordered and fully disordered states.
Project description:In the nucleus, the spatiotemporal regulation of the catalytic subunit of cAMP-dependent protein kinase A (PKA-C) is orchestrated by an intrinsically disordered protein kinase inhibitor, PKI, which recruits the CRM1/RanGTP nuclear exporting complex. How the PKA-C/PKI complex assembles and recognizes CRM1/RanGTP is not well understood. Using NMR, SAXS, fluorescence, metadynamics, and Markov model analysis, we determined the multi-state recognition pathway for PKI. After a fast binding step in which PKA-C selects PKI's most competent conformations, PKI folds upon binding through a slow conformational rearrangement within the enzyme's binding pocket. The high-affinity and pseudo-substrate regions of PKI become more structured and the transient interactions with the kinase augment the helical content of the nuclear export sequence, which is then poised to recruit the CRM1/RanGTP complex for nuclear translocation. The multistate binding mechanism featured by PKA-C/PKI complex represents a paradigm on how disordered, ancillary proteins (or protein domains) are able to operate multiple functions such as inhibiting the kinase while recruiting other regulatory proteins for nuclear export.
Project description:Excited state intramolecular proton transfer (ESIPT) dynamics of the o-hydroxy analogs of the green fluorescent protein (GFP) chromophore have been investigated by time-resolved spectroscopies and theoretical calculations. These molecules comprise an excellent system to investigate the effect of electronic properties on the energetics and dynamics of ESIPT and to realize applications in photonics. Time-resolved fluorescence with high enough resolution was employed to record the dynamics and the nuclear wave packets in the excited product state exclusively in conjunction with quantum chemical methods. The ESIPT are ultrafast occurring in 30 fs for the compounds employed in this work. Although the ESIPT rates are not affected by the electronic properties of the substituents suggesting barrierless reaction, the energetics, their structures, subsequent dynamics following ESIPT, and possibly the product species are distinct. The results attest that fine tuning of the electronic properties of the compounds may modify the molecular dynamics of ESIPT and subsequent structural relaxation to achieve brighter emitters with broad tuning capabilities.
Project description:Intrinsically disordered proteins (IDPs) are proteins that possess large unstructured regions. Their importance is increasingly recognized in biology but their characterization remains a challenging task. We employed field swept Electron Spin Echoes in pulsed EPR to investigate low-temperature stochastic molecular librations in a spin-labeled IDP, casein (the main protein of milk). For comparison, a spin-labeled globular protein, hen egg white lysozyme, is also investigated. For casein these motions were found to start at 100 K while for lysozyme only above 130 K, which was ascribed to a denser and more ordered molecular packing in lysozyme. However, above 120 K, the motions in casein were found to depend on temperature much slower than those in lysozyme. This abrupt change in casein was assigned to an ordering transition in which peptide residues rearrange making the molecular packing more rigid and/or more cohesive. The found features of molecular motions in these two proteins turned out to be very similar to those known for gel-phase lipid bilayers composed of conformationally ordered and conformationally disordered lipids. This analogy with a simpler molecular system may appear helpful for elucidation properties of molecular packing in IDPs.