Project description:This study compared the subgingival microbiota of subjects with periodontitis to those with periodontal health using the Human Oral Microbe Identification Microarray (HOMIM).
Project description:Understanding the microbial community and function are crucial knowledge for crop management. In this study, bacterial and fungal community structures both rhizosphere and endosphere in kiwifruit were analyzed to gain our knowledge in kiwifruit microbiome. Microbial community in rhizosphere was less variation than endosphere community. Functional prediction results demonstrated that abundance of saprotrophic fungi was similar in both rhizosphere and endosphere, but potential pathogenic fungi was more abundance in endosphere than in rhizosphere. This finding suggested that maintain healthy soil is the first priority to protect the host plant against biotic stresses.
Project description:The rhizosphere of invasive plants presumably develops different soil microbial assemblages compared with native plants, which may hinder or promote their invasion. However, to date, no studies have clearly explored rhizosphere microbial community assemblages during invasion. The invasive species Ambrosia artemisiifolia L. and Bidens pilosa L. are widely distributed in China and are known to reduce local biodiversity and cause agricultural losses. Monoculture of A. artemisiifolia or B. pilosa, a mixture of each invasive and native species, and monoculture of native species were established to simulate different degrees of invasion. Metagenomic sequencing techniques were used to test microbial community structure and function. The aim was to explore the drivers of the assembly of peculiar functional microbes in the rhizosphere soil of invasive species during the long-term invasive-native species interaction. Compared with the native species, the relative abundance of 34 microbial genera was higher in the rhizosphere soil of the invasive species. The NO3-N concentration in the rhizosphere soil from the A. artemisiifolia and B. pilosa monocultures was lower than that from monocultures of the three native plants, whereas pH followed the opposite trend. The NO3-N concentration was significantly and negatively correlated with Sporichthya, Afipia, Actinokineospora, and Pseudolabrys. pH was positively correlated with Bradyrhizobium, Actinoplanes, Micromonospora, Steroidobacter, Burkholderia, and Labilithrix. The differences in soil microbes, NO3-N concentrations, and pH between native and invasive species suggest that the rhizosphere soil microbial assemblages may vary. The reduced NO3-N concentration and increased pH corelated with changes in rhizosphere microbial community during A. artemisiifolia and B. pilosa invasion. IMPORTANCE Soil microbial communities play a vital role in the growth of invasive plants. Invasive species may shape peculiar functional microbes in the rhizosphere soil of an invasive species to benefit its growth. However, the drivers of the assembly of soil microbial communities in the rhizosphere soil of invasive species remain unclear. Our study established the relationship between soil microbial communities and soil chemical properties during invasion by A. artemisiifolia and B. pilosa. Additionally, it showed that the presence of the invasive plants correlated with changes in NO3-N and pH, as well as in rhizosphere microbial community assemblage. Furthermore, the study provided important insights into the difference in the microbial community assembly between native and invasive plant species.
Project description:Increased root H+ secretion is known as a strategy of plant adaption to low phosphorus (P) stress by enhancing mobilization of sparingly soluble P-sources. However, it remains fragmentarywhether enhanced H+ exudation could reconstruct the plant rhizosphere microbial community under low P stress. The present study found that P deficiency led to enhanced H+ exudation from soybean (Glycine max) roots. Three out of all eleven soybean H+-pyrophosphatases (GmVP) geneswere up-regulated by Pi starvation in soybean roots. Among them, GmVP2 showed the highest expression level under low P conditions. Transient expression of a GmVP2-green fluorescent protein chimera in tobacco (Nicotiana tabacum) leaves, and functional characterization of GmVP2 in transgenic soybean hairy roots demonstrated that GmVP2 encoded a plasma membrane transporter that mediated H+ exudation. Meanwhile, GmVP2-overexpression in Arabidopsis thaliana resulted in enhanced root H+ exudation, promoted plant growth, and improved sparingly soluble Ca-P utilization. Overexpression of GmVP2 also changed the rhizospheric microbial community structures, as reflected by a preferential accumulation of acidobacteria in the rhizosphere soils. These results suggested that GmVP2 mediated Pi-starvation responsive H+ exudation,which is not only involved in plant growth and mobilization of sparingly soluble P-sources, but also affects microbial community structures in soils.
Project description:Root-associated microbiomes play significant roles in plant productivity, health and ecological services. However, our current understanding of the microbial assemblages in the rhizosphere and endosphere of herbage is still limited. To gain insights into these microbial assemblages, Illumina MiSeq high-throughput sequencing was performed to investigate the characteristics of microbial communities of an herbage, Leymus chinensis. Hierarchical clustering analysis and principal coordinate analysis (PCoA) results showed that microbial communities of the rhizosphere and endosphere samples were clearly distinguished. Rhizosphere soil communities showed a greater sensitivity than root endosphere communities using linear discriminant analysis (LDA) effect size (LEfSe). Rhizosphere and endosphere communities performed their respective functions in the soil as a cohesive collective, and Rhizobiales were observed to function as generalists. Redundancy analysis (RDA) and variance partitioning analysis (VPA) results revealed that the contribution of the interaction between soil physicochemical parameters and soil enzymes was greater than their individual contributions. In summary, this study is the first to elucidate the microbial diversity and community structure of L. chinensis and compare the diversity and composition between rhizospheric and endosphere microbiomes.
Project description:Lily Fusarium wilt disease caused by Fusarium spp. spreads rapidly and is highly destructive, leading to a severe reduction in yield. In this study, lily (Lilium brownii var. viridulum) bulbs were irrigated after planting with suspensions of two Bacillus strains that effectively control lily Fusarium wilt disease to assess their effects on the rhizosphere soil properties and microbial community. A high-throughput sequencing of microorganisms in the rhizosphere soil was performed and the soil physicochemical properties were measured. The FunGuild and Tax4Fun tools were used for a functional profile prediction. The results showed that Bacillus amyloliquefaciens BF1 and B. subtilis Y37 controlled lily Fusarium wilt disease with control efficacies of 58.74% and 68.93%, respectively, and effectively colonized the rhizosphere soil. BF1 and Y37 increased the bacterial diversity and richness of the rhizosphere soil and improved the physicochemical properties of the soil, thereby favoring the proliferation of beneficial microbes. The relative abundance of beneficial bacteria was increased and that of pathogenic bacteria was decreased. Bacillus abundance in the rhizosphere was positively correlated with most soil physicochemical properties, whereas Fusarium abundance was negatively correlated with most physicochemical properties. Functional prediction revealed that irrigation with BF1 and Y37 significantly upregulated glycolysis/gluconeogenesis among metabolism and absorption pathways. This study provides insights into the mechanism by which two Bacillus strains with antifungal activity, BF1 and Y37, antagonize plant pathogenic fungi and lays the foundation for their effective application as biocontrol agents.
Project description:IntroductionPlant invasion can profoundly alter ecosystem processes driven by microorganisms. The fundamental mechanisms linking microbial communities, functional genes, and edaphic characteristics in invaded ecosystems are, nevertheless, poorly understood.MethodsHere, soil microbial communities and functions were determined across 22 Amaranthus palmeri (A. palmeri) invaded patches by pairwise 22 native patches located in the Jing-Jin-Ji region of China using high-throughput amplicon sequencing and quantitative microbial element cycling technologies.ResultsAs a result, the composition and structure of rhizosphere soil bacterial communities differed significantly between invasive and native plants according to principal coordinate analysis. A. palmeri soils exhibited higher abundance of Bacteroidetes and Nitrospirae, and lower abundance of Actinobacteria than native soils. Additionally, compared to native rhizosphere soils, A. palmeri harbored a much more complex functional gene network with higher edge numbers, average degree, and average clustering coefficient, as well as lower network distance and diameter. Furthermore, the five keystone taxa identified in A. palmeri rhizosphere soils belonged to the orders of Longimicrobiales, Kineosporiales, Armatimonadales, Rhizobiales and Myxococcales, whereas Sphingomonadales and Gemmatimonadales predominated in the native rhizosphere soils. Moreover, random forest model revealed that keystone taxa were more important indicators of soil functional attributes than edaphic variables in both A. palmeri and native rhizosphere soils. For edaphic variables, only ammonium nitrogen was a significant predictor of soil functional potentials in A. palmeri invaded ecosystems. We also found keystone taxa in A. palmeri rhizosphere soils had strong and positive correlations with functional genes compared to native soils.DiscussionOur study highlighted the importance of keystone taxa as a driver of soil functioning in invaded ecosystem.
Project description:This study addressed the selection of the rhizospheric microbial community from the bulk soil reservoir under agricultural management of soybean in Amazon forest soils. We used a shotgun metagenomics approach to investigate the taxonomic and functional diversities of microbial communities in the bulk soil and in the rhizosphere of soybean plants and tested the validity of neutral and niche theories to explain the rhizosphere community assembly processes. Our results showed a clear selection at both taxonomic and functional levels operating in the assembly of the soybean rhizosphere community. The taxonomic analysis revealed that the rhizosphere community is a subset of the bulk soil community. Species abundance in rhizosphere fits the log-normal distribution model, which is an indicator of the occurrence of niche-based processes. In addition, the data indicate that the rhizosphere community is selected based on functional cores related to the metabolisms of nitrogen, iron, phosphorus and potassium, which are related to benefits to the plant, such as growth promotion and nutrition. The network analysis including bacterial groups and functions was less complex in rhizosphere, suggesting the specialization of some specific metabolic pathways. We conclude that the assembly of the microbial community in the rhizosphere is based on niche-based processes as a result of the selection power of the plant and other environmental factors.
Project description:Bohai Gulf is the main area for apple tree cultivation in China. Consecutive replanting significantly affects the yield and quality of apple trees in this area. Microecological imbalance in apple trees' rhizospheres caused by variation in the soil microbial community is considered the primary cause of apple replant disease (ARD). This study analysed the microbial communities of the rhizospheres of perennial apple trees (PAT) and apple tree saplings under replanting (ATS) around Bohai Gulf using high-throughput sequencing. The results revealed increased populations of typical pathogenic fungi Verticillium and bacteria Xanthomonadaceae, and decreased populations of beneficial bacterial populations Pseudomonas and Bacillus with replanting, suggesting that competition between pathogens and beneficial microbes varies according to the ratio of pathogens to beneficial microbes in rhizosphere soil under the replanting system. Meanwhile, replanting was accompanied by an increase in the antagonistic bacteria Arthrobacter and fungus Chaetomium, suggesting that increased numbers of pathogens can lead to more instances of antagonism. Redundancy analysis (RDA) revealed site position and the main soil properties (pH, organic matter, available N, available K, available P, and moisture) affected the microbial community composition. It found clear differences in soil microbial communities and demonstrated a better understanding of the causes for ARD.