Project description:A pristine Li-rich layered electrode material with composition Li1.2Mn0.55Ni0.15Co0.1O2 was characterized by X-ray diffraction, transmission electron microscopy, and scanning transmission electron microscopy to determine whether it is a coherent mixture of monoclinic C2/m Li2MO3 and trigonal [Formula: see text] LiMO2 phases or a solid solution of the monoclinic phase. Contradictory results have been previously reported which can be attributed to the complexity and structural similarity of the monoclinic and trigonal phases. We resolved this uncertainty by combining diffraction and imaging techniques that probe complimentary length scales. Our results demonstrate that the structure is primarily monoclinic, supporting the solid solution model, although near surface structural alterations were also observed.
Project description:This work figures out the material balance of the reactions occurring in the O2 electrode of a Li-O2 cell, where a Ketjenblack-based porous carbon electrode comes into contact with a tetraethylene glycol dimethyl ether (TEGDME)-based electrolyte under more practical conditions of less electrolyte amount and high areal capacity. The ratio of electrolyte weight to cell capacity (E/C, g A h-1) is a good parameter to correlate with cycle life. Only 5 cycles were obtained at an areal capacity of 4 mA h cm-2 (E/C = 10) and a discharge/charge current density of 0.4 mA cm-2, which corresponds to the energy density of 170 W h kg-1 at a complete cell level. When the areal capacity was decreased to half (E/C = 20) by setting a current density at 0.2 mA cm-2, the cycle life was extended to 18 cycles. However, the total electric charge consumed for parasitic reactions was 35 and 59% at the first and the third cycle, respectively. This surprisingly large amount of parasitic reactions was suppressed by half using redox mediators at 0.4 mA cm-2 while keeping a similar cycle life. Based on by-product distribution, we will propose possible mechanisms of TEGDME decomposition and report a water breathing behavior, where H2O is produced during charge and consumed during discharge.
Project description:LiCoBO3 could be a promising cathode material given the electronic and ionic conductivity problems are addressed. Here, Mg substitution in LiCoBO3 is employed to stabilise the structure and improve the electrochemical performance. LiMg0.1Co0.9BO3 is synthesised for the first time via sol-gel method and Mg substitution in the structure is verified by X-ray powder diffraction and energy dispersive X-ray analyses. The electrochemical properties are investigated by galvanostatic cycling and cyclic voltammetry tests. The composite electrode with conductive carbon (reduced graphite oxide and carbon black) delivers a first discharge capacity of 32 mA h g-1 within a 4.7-1.7 voltage window at a rate of 10 mA g-1. The cycling is relatively stable compared to the unsubstituted LiCoBO3. Mg substitution may enhance the electrochemical performance of borate-based electrode materials when combined with suitable electrode design techniques.
Project description:A theoretical framework to explain how interactions between redox mediators (RMs) and electrolyte components impact electron transfer kinetics, thermodynamics, and catalytic efficiency is presented. Specifically focusing on ionic association, 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) is used as a case study to demonstrate these effects. Our analytical equations reveal how the observed redox couple's potential and electron transfer rate constants evolve with Li+ concentration, resulting from different redox activity mechanisms. Experimental validation by cyclic voltammetry measurements shows that DBBQ binds to three Li+ ions in its reduced state and one Li+ ion in its neutral form, leading to a maximum in the electron transfer kinetic constant at around 0.25 M. The framework is extended to account for other phenomena that can play an important role in the redox reaction mechanisms of RMs. The effect of Li+ ion solvation and its association with the supporting salt counteranion on the redox processes is considered, and the role of "free Li+" concentration in determining the electrochemical behaviour is emphasized. The impact of Li+ concentration on oxygen reduction reaction (ORR) catalysis was then explored, again using DBBQ and modelling the effects of the Li+ concentration on electron transfer and catalytic kinetics. We show that even though the observed catalytic rate constant increases with Li+ concentration, the overall catalysis can become more sluggish depending on the electron transfer pathway. Cyclic voltammograms are presented as illustrative examples. The strength of the proposed theoretical framework lies in its adaptability to a wider range of redox mediators and their interactions with the various electrolyte components and redox active molecules such as oxygen. By understanding these effects, we open up new avenues to tune electron transfer and catalytic kinetics and thus improve the energy efficiency and rate capability of Li-O2 batteries. Although exact results may not transfer to different solvents, the predictions of our model will provide a starting point for future studies of similar systems, and the model itself is easily extensible to new chemistries.
Project description:The development of energy-dense all-solid-state Li-based batteries requires positive electrode active materials that are ionic conductive and compressible at room temperature. Indeed, these material properties could contribute to a sensible reduction of the amount of the solid-state electrolyte in the composite electrode, thus, enabling higher mass loading of active materials. Here, we propose the synthesis and use of lithium titanium chloride (Li3TiCl6) as room-temperature ionic conductive (i.e., 1.04 mS cm-1 at 25 °C) and compressible active materials for all-solid-state Li-based batteries. When a composite positive electrode comprising 95 wt.% of Li3TiCl6 is tested in combination with a Li-In alloy negative electrode and Li6PS5Cl/Li2ZrCl6 solid-state electrolytes, an initial discharge capacity of about 90 mAh g-1 and an average cell discharge voltage of about 2.53 V are obtained. Furthermore, a capacity retention of more than 62% is attainable after 2500 cycles at 92.5 mA g-1 and 25 °C with an applied external pressure of 1.5 tons. We also report the assembly and testing of a "single Li3TiCl6" cell where this chloride material is used as the solid electrolyte, negative electrode and positive electrode.
Project description:Significant research effort has focused on improving the specific energy of lithium-ion batteries for emerging applications, such as electric vehicles. Recently, a rock salt-type Li4Mn2O5 cathode material with a large discharge capacity (~350 mA·hour g-1) was discovered. However, a full structural model of Li4Mn2O5 and its corresponding phase transformations, as well as the atomistic origins of the high capacity, warrants further investigation. We use first-principles density functional theory (DFT) calculations to investigate both the disordered rock salt-type Li4Mn2O5 structure and the ordered ground-state structure. The ionic ordering in the ground-state structure is determined via a DFT-based enumeration method. We use both the ordered and disordered structures to interrogate the delithiation process and find that it occurs via a three-step reaction pathway involving the complex interplay of cation and anion redox reactions: (i) an initial metal oxidation, Mn3+→Mn4+ (Li x Mn2O5, 4 > x > 2); (ii) followed by anion oxidation, O2-→O1- (2 > x > 1); and (iii) finally, further metal oxidation, Mn4+→Mn5+ (1 > x > 0). This final step is concomitant with the Mn migration from the original octahedral site to the adjacent tetrahedral site, introducing a kinetic barrier to reversible charge/discharge cycles. Armed with this knowledge of the charging process, we use high-throughput DFT calculations to study metal mixing in this compound, screening potential new materials for stability and kinetic reversibility. We predict that mixing with M = V and Cr in Li4(Mn,M)2O5 will produce new stable compounds with substantially improved electrochemical properties.
Project description:Nanostructured LiMnO2 integrated with Li3PO4 was successfully synthesized by the mechanical milling route and examined as a new series of positive electrode materials for rechargeable lithium batteries. Although uniform mixing at the atomic scale between LiMnO2 and Li3PO4 was not anticipated because of the noncompatibility of crystal structures for both phases, our study reveals that phosphorus ions with excess lithium ions dissolve into nanosize crystalline LiMnO2 as first evidenced by elemental mapping using STEM-EELS combined with total X-ray scattering, solid-state NMR spectroscopy, and a theoretical ab initio study. The integrated phase features a low-crystallinity metastable phase with a unique nanostructure; the phosphorus ion located at the tetrahedral site shares faces with adjacent lithium ions at slightly distorted octahedral sites. This phase delivers a large reversible capacity of ∼320 mA h g-1 as a high-energy positive electrode material in Li cells. The large reversible capacity originated from the contribution from the anionic redox of oxygen coupled with the cationic redox of Mn ions, as evidenced by operando soft XAS spectroscopy, and the superior reversibility of the anionic redox and the suppression of oxygen loss were also found by online electrochemical mass spectroscopy. The improved reversibility of the anionic redox originates from the presence of phosphorus ions associated with the suppression of oxygen dimerization, as supported by a theoretical study. From these results, the mechanistic foundations of nanostructured high-capacity positive electrode materials were established, and further chemical and physical optimization may lead to the development of next-generation electrochemical devices.
Project description:The demand for eco-friendly materials for secondary batteries has stimulated the exploration of a wide variety of Fe oxides, but their potential as electrode materials remains unknown. In this contribution, ϵ-FeOOH was synthesized using a high-pressure/high-temperature method and examined for the first time in nonaqueous Li and Na cells. Under a pressure of 8 GPa, α-FeOOH transformed into ϵ-FeOOH at 400 °C and then decomposed into α-Fe2O3 and H2O above 500 °C. Here, FeO6 octahedra form [2 × 1] tunnels in α-FeOOH or [1 × 1] tunnels in ϵ-FeOOH. The ϵ-FeOOH/Li cell exhibited a rechargeable capacity (Q recha) of ∼700 mA h·g-1 at 0.02-3.0 V, whereas the ϵ-FeOOH/Na cell indicated a Q recha of less than 30 mA h·g-1 at 0.02-2.7 V. The discharge and charge profiles of ϵ-FeOOH and α-FeOOH were similar, but the rate capability of ϵ-FeOOH was superior to that of α-FeOOH.
Project description:Lithium-ion batteries (LIBs) are generally constructed by lithium-including positive electrode materials, such as LiCoO2, and lithium-free negative electrode materials, such as graphite. Recently, lithium-free positive electrode materials, such as sulfur, are gathering great attention from their very high capacities, thereby significantly increasing the energy density of LIBs. Though the lithium-free materials need to be combined with lithium-containing negative electrode materials, the latter has not been well developed yet. In this work, the feasibility of Li-rich Li-Si alloy is examined as a lithium-containing negative electrode material. Li-rich Li-Si alloy is prepared by the melt-solidification of Li and Si metals with the composition of Li21Si5. By repeating delithiation/lithiation cycles, Li-Si particles turn into porous structure, whereas the original particle size remains unchanged. Since Li-Si is free from severe constriction/expansion upon delithiation/lithiation, it shows much better cyclability than Si. The feasibility of the Li-Si alloy is further examined by constructing a full-cell together with a lithium-free positive electrode. Though Li-Si alloy is too active to be mixed with binder polymers, the coating with carbon-black powder by physical mixing is found to prevent the undesirable reactions of Li-Si alloy with binder polymers, and thus enables the construction of a more practical electrochemical cell.
Project description:Anode material Li2TiO3-coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance. Charge/discharge capacities of 266 mA h g-1 at 0.100 A g-1 and 200 mA h g-1 at 1.000 A g-1 are reached for Li2TiO3-coke. A cycling life-time test shows that Li2TiO3-coke gives a specific capacity of 264 mA h g-1 at 0.300 A g-1 and a capacity retention of 92% after 1000 cycles of charge/discharge.