Project description:Parental care is essential for the survival of mammals, yet the mechanisms underlying its evolution remain largely unknown. Here we show that two sister species of mice, Peromyscus polionotus and Peromyscus maniculatus, have large and heritable differences in parental behaviour. Using quantitative genetics, we identify 12 genomic regions that affect parental care, 8 of which have sex-specific effects, suggesting that parental care can evolve independently in males and females. Furthermore, some regions affect parental care broadly, whereas others affect specific behaviours, such as nest building. Of the genes linked to differences in nest-building behaviour, vasopressin is differentially expressed in the hypothalamus of the two species, with increased levels associated with less nest building. Using pharmacology in Peromyscus and chemogenetics in Mus, we show that vasopressin inhibits nest building but not other parental behaviours. Together, our results indicate that variation in an ancient neuropeptide contributes to interspecific differences in parental care.
Project description:The existence of life-history trade-offs is a fundamental assumption of evolutionary biology and behavioural ecology, yet empirical studies have found mixed evidence for this. Such trade-offs are expected when individuals vary in how they allocate their limited resource budgets between different life-history functions (variation in resource allocation), but they may be masked when individuals vary in how many resources they have acquired that they can later allocate to life-history functions (variation in resource acquisition). We currently lack studies on the extent to which individual differences in behaviour reflect variation between individuals in resource acquisition and resource allocation. Here, we use parental care as a case study for exploring this question. We used the burying beetle Nicrophorus vespilloides, which exhibits facultative biparental care, comprising direct care (provisioning food or interacting with larvae) and indirect care (guarding or maintaining the carcass). We found some evidence for a positive relationship between these two components of care for both male and female parents. In addition, parents that spent more time providing care 24 h after hatching also tended to provide care for longer. Lastly, parents that provided more parental care did not experience a trade-off of reduced lifespan after the breeding attempt. On the contrary, we found a positive relationship between the duration of care provided and parents' post-breeding lifespan. Our finding of positive relationships between parental behaviours and between parental care and lifespan suggests that variation in care was mainly driven by differences in prior resource acquisition (i.e., parental quality) among individuals rather than differences in resource allocation. Our findings thus suggest that high intraspecific variation in parental quality can potentially mask reproductive investment trade-offs within populations.
Project description:The evolution of elaborate forms of parental care is an important topic in behavioral ecology, yet the factors shaping the evolution of complex suites of parental and offspring traits are poorly understood. Here, we use a multivariate quantitative genetic approach to study phenotypic and genetic correlations between parental and offspring traits in the burying beetle Nicrophorus vespilloides. To this end, we recorded 2 prenatal traits (clutch size and egg size), 2 postnatal parental behaviors (direct care directed toward larvae and indirect care directed toward resource maintenance), 1 offspring behavior (begging), and 2 measures of breeding success (larval dispersal mass and number of dispersing larvae). Females breeding on larger carcasses provided less direct care but produced larger larvae than females breeding on smaller carcasses. Furthermore, there were positive phenotypic correlations between clutch size, direct, and indirect care. Both egg size and direct care were positively correlated with dispersal mass, whereas clutch size was negatively correlated with dispersal mass. Clutch size and number of dispersed larvae showed genetic variance both in terms of differences between populations of origin and significant heritabilities. However, we found no evidence of genetic variance underlying other parental or offspring traits. Our results suggest that correlations between suites of parental traits are driven by variation in individual quality rather than trade-offs, that some parental traits promote offspring growth while others increase the number of offspring produced, and that parental and offspring traits might respond slowly to selection due to low levels of additive genetic variance.
Project description:HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases.
Project description:Sibling care is a hallmark of the social insects, but its evolution remains challenging to explain. The hypothesis that sibling care evolved from ancestral maternal care in the primitively eusocial insects has been elaborated to involve heterochronic changes in gene expression. This elaboration leads to the prediction that workers in these species will show patterns of gene expression more similar to foundress queens, who express maternal care behavior, than to established queens engaged solely in reproductive behavior. We tested this idea in the bumblebee Bombus terrestris using a microarray platform with ca. 4,500 genes. Unlike in the wasp Polistes metricus, in which support for the above prediction has been obtained, we found that patterns of brain gene expression in foundress and queen bumblebees were more similar to each other than to workers. However, comparisons of lists of differentially expressed genes derived from this study and gene lists from microarray studies in Polistes and the honeybee Apis mellifera suggest that there is a shared set of genes involved in the regulation of related social behaviors across independent eusocial lineages. Together, these results suggest that the multiple independent evolutions of eusociality in the insects involved a combination of shared and different mechanisms.
Project description:Complex parenting has been proposed to contribute to the evolutionary success of vertebrates. However, the evolutionary routes to complex parenting and the role of parenting in vertebrate diversity are still contentious. Although basal vertebrates provide clues to complex reproduction, these are often understudied. Using 181 species that represent all major lineages of an early vertebrate group, the salamanders and newts (Caudata, salamanders henceforth) here we show that fertilisation mode is tied to parental care: male-only care occurs in external fertilisers, whereas female-only care exclusively occurs in internal fertilisers. Importantly, internal fertilisation opens the way to terrestrial reproduction, because fertilised females are able to deposit their eggs on land, and with maternal care provision, the eggs could potentially develop outside the aquatic environment. Taken together, our results of a semi-aquatic early vertebrate group propose that the diversity and follow-up radiation of terrestrial vertebrates are inherently associated with a complex social behaviour, parenting.
Project description:Theory maintains that when future environment is predictable, parents should adjust the phenotype of their offspring to match the anticipated environment. The plausibility of positive anticipatory parental effects is hotly debated and the experimental evidence for the evolution of such effects is currently lacking. We experimentally investigated the evolution of anticipatory maternal effects in a range of environments that differ drastically in how predictable they are. Populations of the nematode Caenorhabditis remanei, adapted to 20°C, were exposed to a novel temperature (25°C) for 30 generations with either positive or zero correlation between parent and offspring environment. We found that populations evolving in novel environments that were predictable across generations evolved a positive anticipatory maternal effect, because they required maternal exposure to 25°C to achieve maximum reproduction in that temperature. In contrast, populations evolving under zero environmental correlation had lost this anticipatory maternal effect. Similar but weaker patterns were found if instead rate-sensitive population growth was used as a fitness measure. These findings demonstrate that anticipatory parental effects evolve in response to environmental change so that ill-fitting parental effects can be rapidly lost. Evolution of positive anticipatory parental effects can aid population viability in rapidly changing but predictable environments.
Project description:Parental care is extremely diverse across species, ranging from simple behaviours to complex adaptations, varying in duration and in which sex cares. Surprisingly, we know little about how such diversity has evolved. Here, using phylogenetic comparative methods and data for over 1300 amphibian species, we show that egg attendance, arguably one of the simplest care behaviours, is gained and lost faster than any other care form, while complex adaptations, like brooding and viviparity, are lost at very low rates, if at all. Prolonged care from the egg to later developmental stages evolves from temporally limited care, but it is as easily lost as it is gained. Finally, biparental care is evolutionarily unstable regardless of whether the parents perform complementary or similar care duties. By considering the full spectrum of parental care adaptations, our study reveals a more complex and nuanced picture of how care evolves, is maintained, or is lost.
Project description:Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.