Project description:BackgroundAcute myeloid leukemia (AML) is a highly heterogeneous cluster of hematologic malignancies. Leukemic stem cells (LSCs) are one of the culprits for the persistence and relapse of AML. The discovery of copper-induced cell death, namely cuproptosis, gives bright insights into the treatment of AML. Analogous to copper ions, long non-coding RNAs (lncRNAs) are not bystanders for AML progression, especially for LSC physiology. Uncovering the involvement of cuproptosis-related lncRNAs in AML will benefit clinical management.MethodsDetection of prognostic relevant cuproptosis-related lncRNAs are carried out by Pearson correlation analysis and univariate Cox analysis with RNA sequencing data of The Cancer Genome Atlas-Acute Myeloid Leukemia (TCGA-LAML) cohort. After the least absolute shrinkage and selection operator (LASSO) regression and the subsequent multivariate Cox analysis, a cuproptosis-related risk score (CuRS) system was derived to weigh the risk of AML patients. Thereafter, AML patients were classified into two groups by their risk property which was validated with principal component analysis (PCA), risk curves, Kaplan-Meier survival analysis, the combined receiver operating characteristic (ROC) curves, and nomogram. Variations in biological pathways and divergences in immune infiltration and immune-related processes between groups were resolved by GSEA and CIBERSORT algorism, respectively. Response to chemotherapies were scrutinized as well. The expression profiles of the candidate lncRNAs were examined by real-time quantitative polymerase chain reaction (RT-qPCR) and the specific mechanisms of lncRNA FAM30A were determined by transcriptomic analysis.ResultsWe fabricated an efficient prognostic signature named CuRS incorporating 4 lncRNAs (TRAF3IP2-AS1, NBR2, TP53TG1, and FAM30A) relevant to immune environment and chemotherapy responsiveness. The relevance of lncRNA FAM30A with proliferation, migration ability, Daunorubicin resistance and its reciprocal action with AUF1 were demonstrated in an LSC cell line. Transcriptomic analysis suggested correlations between FAM30A and T cell differentiation and signaling, intercellular junction genes.ConclusionsThe prognostic signature CuRS can guide prognostic stratification and personalized AML therapy. Analysis of FAM30A offers a foundation for investigating LSC-targeted therapies.
Project description:Objective: Using bioinformatics analyses, this study aimed to identify lncRNAs related to the immune status of acute myeloid leukemia (AML) patients and ascertain the potential impact in immunity-related competing endogenous RNA (ceRNA) networks on AML prognosis. Methods: AML-related RNA-seq FPKM data, AML-related miRNA expression microarray data, and gene sets associated with immunity-related pathways were, respectively, obtained from the TCGA, GEO, and ImmReg databases. An immunity-related ceRNA network was then constructed according to the predicted interactions between AML-related mRNAs, lncRNAs, and miRNAs. After performing LASSO and multivariate Cox regression analyses, lncRNAs in the ceRNA network were used to establish an AML prognostic model. According to mutual regulatory relationships and consistent trends of expression among candidate ceRNAs, two ceRNA subnetworks related to the AML prognostic model were determined. Finally, the correlation between the expression levels of mRNAs, lncRNAs, and miRNAs in each ceRNA subnetwork and immune cell infiltration (assessed by combining the ESTIMATE and CIBERSORT methods and ssGSEA) was analyzed. Results: A total of 424 immunity-related differentially expressed (IR-DE) mRNAs (IR-DEmRNAs), 191 IR-DElncRNAs, and 69 IR-DEmiRNAs were obtained, and a ceRNA network of 20 IR-DElncRNAs, 6 IR-DEmRNAs, and 3 IR-DEmiRNAs was established. Univariate Cox regression analysis was conducted on 20 IR-DElncRNAs, and 7 of these were identified to be significantly correlated with the overall survival (OS) time in AML patients. Then, two IR-DElncRNAs (MEG3 and HCP5) were screened as independent OS-related factors by LASSO and multivariable Cox regression analyses, and a prognostic model was constructed to evaluate the survival risk in AML patients. Survival analyses indicated that the OS of patients was often poor in the high-risk group. Additionally, from this model, two ceRNA regulatory pathways, namely, MEG3/miR-125a-5p/SEMA4C and HCP5/miR-125b-5p/IL6R, which were potentially involved in the immune regulation of AML prognosis were identified. Conclusion: lncRNAs HCP5 and MEG3 may act as key ceRNAs in the pathogenesis in AML by regulating immune cell representation as part of the regulatory lncRNA-miRNA-mRNA axes. The candidate mRNAs, lncRNAs, and miRNAs included in the ceRNA network identified here may serve as useful prognostic biomarkers and immunotherapeutic targets for AML.
Project description:BackgroundCuproptosis is a type of programmed cell death that is involved in multiple physiological and pathological processes, including cancer. We constructed a prognostic cuproptosis-related long non-coding RNA (lncRNA) signature for acute myeloid leukemia (AML).MethodsRNA-seq and clinical data for AML patients were acquired from The Cancer Genome Atlas (TCGA) database. The cuproptosis-related prognostic lncRNAs were identified by co-expression and univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) was performed to construct a cuproptosis-related lncRNA signature, after which the AML patients were classified into two risk groups based on the risk model. Kaplan-Meier, ROC, univariate and multivariate Cox regression, nomogram, and calibration curves analyses were used to evaluate the prognostic value of the model. Then, expression levels of the lncRNAs in the signature were investigated in AML samples by quantitative polymerase chain reaction (qPCR). KEGG functional analysis, single-sample GSEA (ssGSEA), and the ESTIMATE algorithm were used to analyze the mechanisms and immune status between the different risk groups. The sensitivities for potential therapeutic drugs for AML were also investigated.ResultsFive hundred and three lncRNAs related to 19 CRGs in AML samples from the TCGA database were obtained, and 21 differentially expressed lncRNAs were identified based on the 2-year overall survival (OS) outcomes of AML patients. A 4-cuproptosis-related lncRNA signature for survival was constructed by LASSO Cox regression. High-risk AML patients exhibited worse outcomes. Univariate and multivariate Cox regression analyses demonstrated the independent prognostic value of the model. ROC, nomogram, and calibration curves analyses revealed the predictive power of the signature. KEGG pathway and ssGSEA analyses showed that the high-risk group had higher immune activities. Lastly, AML patients from different risk groups showed differential responses to various agents.ConclusionA cuproptosis-related lncRNA signature was established to predict the prognosis and inform on potential therapeutic strategies for AML patients.
Project description:BackgroundDiabetic kidney disease (DKD) is the primary contributor to renal failure and poses a severe threat to human health. Accumulating studies demonstrated that competing endogenous RNA (ceRNA) network is involved in cuproptosis and DKD progression. However, the role of cuproptosis-associated ceRNA network and immune infiltration in DKD remains largely unclear. This study aimed to investigate the cuproptosis-related ceRNA regulation network and immune infiltration in DKD.MethodsThe rat model of DKD was induced by combining the nephrectomy of the left kidney, high-fat diet, and streptozotocin. Differentially expressed genes (DEGs), miRNAs (DEMs), and lncRNAs (DELs) between normal and DKD rats were obtained. DEGs were intersected with cuproptosis-related genes (CRGs) to obtain DE-CRGs. LncRNAs and miRNAs were predicted based on the DE-CRGs, and they were intersected with DEMs and DELs, respectively. Subsequently, a cuproptosis-associated lncRNA-miRNA-mRNA network was established in DKD. In addition, the relative proportion of 22 infiltrating immune cell types in each sample was calculated, and the relationship between hub DE-CRGs and immune cells was explored.ResultsIn total, there were 429 DEGs, 22 DEMs, and 48 DELs between CON and MOD groups. Then, 73 DE-CRGs were obtained, which were significantly enriched in 22 pathways, such as MAPK signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. In addition, a core cuproptosis-related ceRNA network that included one lncRNA (USR0000B2476D), one miRNA (miR-34a-3p), and eight mRNAs (Mmp9, Pik3c3, Prom1, Snta1, Slc51b, Ntrk3, Snca, Egf) was established. In addition, 18 hub DE-CRGs were obtained. CIBERSORT algorithms showed that resting dendritic cells and resting NK cells were more infiltrated whereas regulatory T cells were less infiltrated in DKD rats than in normal rats. Spearman's correlation analysis revealed that hub DE-CRGs showed significant positive or negative correlations with naive B cells, regulatory T cells, resting NK cells, M0 macrophages, resting dendritic cells, and resting mast cells.ConclusionA ceRNA network was comprehensively constructed, and 18 hub DE-CRGs were obtained, which will provide novel insights into the pathologic mechanism elucidation and targeted therapy development of DKD.
Project description:Long noncoding RNAs (lncRNAs) are a large family of noncoding RNAs that play a critical role in various normal bioprocesses as well as tumorigenesis. However, the expression patterns and biological functions of lncRNAs in acute leukemia have not been well studied. Here, we performed transcriptome-wide lncRNA expression profiling of acute myeloid leukemia (AML) patient samples, along with non-leukemia control hematopoietic samples. We found that lncRNAs were differentially expressed in AML samples relative to control samples. Notably, we identified that lncRNAs upregulated in AML (relative to the control samples) are associated with a lower degree of DNA methylation and a higher ratio of being bound by transcription factors such as SP1, STAT4, ATF-2 and ELK-1 compared with those downregulated in AML. Moreover, an enrichment of H3K4me3 and a depletion of H3K27me3 were observed in upregulated lncRNAs in AML. Expression patterns of three types of lncRNAs (antisense, enhancer and intergenic lncRNAs) have previously been characterized. Of the identified lncRNAs, we found that high expression level lncRNA LOC285758 is associated with the poor prognosis in AML patients. Furthermore, we found that LOC285758 regulates proliferation of AML cell lines by enhancing the expression of HDAC2, a key factor in carcinogenesis. Collectively, our study depicts a landscape of important lncRNAs in AML and provides novel potential therapeutic targets and prognostic markers for AML treatment.
Project description:The ubiquitous metabolite heme has diverse enzymatic and signaling functions in most mammalian cells. Through integrated analyses of mouse models, human cell lines and primary patient samples, we identify de novo heme biosynthesis as a selective dependency in acute myeloid leukemia (AML). The dependency is underpinned by a propensity of AML cells, and especially leukemic stem cells (LSCs), to downregulate heme biosynthesis enzymes (HBEs) which promotes their self-renewal. Inhibition of HBEs causes collapse of mitochondrial Complex IV (CIV) and dysregulates the copper-chaperone system inducing cuproptosis, a form of programmed cell death brought about by the oligomerization of lipoylated proteins by copper. Moreover, we identify pathways that are synthetic lethal with heme biosynthesis, including glycolysis, which can be leveraged for combination strategies. Altogether, our work uncovers a heme rheostat that controls gene expression and drug sensitivity in AML and implicates HBE inhibition as a novel cuproptosis trigger.
Project description:The V-domain Ig suppressor of T-cell activation (VISTA) has been recognized as a critical negative regulator of antitumor immune response and is gaining growing interest as a potential pharmacological target in immunotherapy. This molecule is highly expressed in hematopoietic stem cells and myeloid compartment, and it has been found upmodulated in acute myeloid leukemia (AML). However, VISTA-associated immune features are relatively unexplored in myeloid malignancies. Herein, we aimed to explore whether this immune checkpoint regulator could play a role in the generation of an immune escape environment in AML patients. We characterized VISTA mRNA expression levels in leukemia cell lines and in large publicly available cohorts of specimens from bone marrow of healthy individuals and AML patients at diagnosis by deploying bulk and single-cell RNA sequencing. We also defined the correlations with leukemia-associated burden using results of whole-exome sequencing of AML samples at disease onset. We showed that VISTA expression linearly increased across the myeloid differentiation tree in normal hematopoiesis. Accordingly, its transcript was highly enriched in AML cell lines as well as in AML patients at diagnosis presenting with myelomonocytic and monocytic differentiation. A strong correlation was seen with NPM1 mutations regardless of the presence of FLT3 lesions. Furthermore, VISTA expression levels at baseline correlated with disease recurrence in patients with normal karyotype and NPM1 mutations, a subgroup traditionally considered as favorable according to current diagnostic schemes. Indeed, when compared to patients with long-term remission (>5 years after standard chemotherapy regimens), cases relapsing within 2 years from diagnosis had increased VISTA expression in both leukemia and T cells. Our results suggest a rationale for developing VISTA-targeted therapeutic strategies to treat molecularly defined subgroups of AML patients to prevent disease recurrence and treatment resistance.
Project description:Gastric cancer remains fifth most common cancer often diagnosed at an advanced stage and is the second leading cause of cancer-related death worldwide. Long non-coding RNAs (lncRNAs) involved in various cellular pathways are essential for tumor occurrence and progression and they have high potential to promote or suppress the expression of many genes. In this study, we profiled 19 selected cancer-associated lncRNAs in thirty gastric adenocarcinomas and matching normal tissues by qRT-PCR. Our results showed that most of the lncRNAs were significantly upregulated (12/19). Further, we performed bioinformatic screening of miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets. The prediction identified three microRNAs (miR-21, miR-145 and miR-148a) and five gastric cancer-specific target genes (EGFR, KLF4, DNMT1 and AGO4) which also showed strong correlation with lncRNAs in regression analysis. Finally, we constructed an integrated lncRNA-miRNA-mRNA interaction network of the candidate genes to understand the post-transcriptional gene regulation. The ceRNA network analysis revealed that the differentially regulated miR-21 and miR-148a were playing as central candidates coordinating sponging activity of the lncRNAs analyzed (H19, TUG1 and MALAT1) in this study and the overexpression of H19 and miR-21 could be a signature event of gastric tumorigenesis that could serve as prognostic indicators and therapeutic targets.
Project description:Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides, located within the intergenic stretches or overlapping antisense transcripts of protein coding genes. LncRNAs are involved in numerous biological roles including imprinting, epigenetic regulation, apoptosis, and cell cycle. To determine whether lncRNAs are associated with clinical features and recurrent mutations in older patients (aged ≥60 y) with cytogenetically normal (CN) acute myeloid leukemia (AML), we evaluated lncRNA expression in 148 untreated older CN-AML cases using a custom microarray platform. An independent set of 71 untreated older patients with CN-AML was used to validate the outcome scores using RNA sequencing. Distinctive lncRNA profiles were found associated with selected mutations, such as internal tandem duplications in the FLT3 gene (FLT3-ITD) and mutations in the NPM1, CEBPA, IDH2, ASXL1, and RUNX1 genes. Using the lncRNAs most associated with event-free survival in a training cohort of 148 older patients with CN-AML, we derived a lncRNA score composed of 48 lncRNAs. Patients with an unfavorable compared with favorable lncRNA score had a lower complete response (CR) rate [P < 0.001, odds ratio = 0.14, 54% vs. 89%], shorter disease-free survival (DFS) [P < 0.001, hazard ratio (HR) = 2.88] and overall survival (OS) (P < 0.001, HR = 2.95). The validation set analyses confirmed these results (CR, P = 0.03; DFS, P = 0.009; OS, P = 0.009). Multivariable analyses for CR, DFS, and OS identified the lncRNA score as an independent marker for outcome. In conclusion, lncRNA expression in AML is closely associated with recurrent mutations. A small subset of lncRNAs is correlated strongly with treatment response and survival.
Project description:BackgroundDecitabine has been widely used to treat acute myeloid leukemia (AML); however as AML is a heterogeneous disease, not all patients benefit from decitabine. This study aimed to identify markers for predicting the response to decitabine.MethodsAn intersection of in vitro experiments and bioinformatics was performed using a combination of epigenetic and transcriptomic analysis. A tumor-suppressor gene associated with methylation and the response to decitabine was screened. Then the sensitivity and specificity of this marker in predicting the response to decitabine was confirmed in 54 samples from newly diagnosed AML patients treated with decitabine plus IA regimen in a clinical trial (ChiCTR2000037928).ResultsIn vitro experiments showed that decitabine caused hypomethylation and upregulation of BTG1, while downregulation of BTG1 attenuated the inhibitory effect of decitabine. In newly diagnosed AML patients who received decitabine plus IA regimen, the predictive value of BTG1 to predict complete remission (CR) was assigned with a sensitivity of 86.7% and a specificity of 100.0% when BTG1 expression was < 0.292 (determined using real-time quantitative PCR), with area under the curve (AUC) = 0.933, P = 0.021. The predictive value of BTG1 to predict measurable residual disease (MRD) negativity was assigned with a sensitivity of 100.0% and a specificity of 80.0% when BTG1 expression was < 0.292 (AUC = 0.892, P = 0.012). Patients were divided into low and high BTG1 expression groups according to a cutoff of 0.292, and the CR rate of the low-expression group was significantly higher than that of the high-expression group (97.5% vs. 50%, P < 0.001).ConclusionsLow expression of BTG1 was associated with CR and MRD negativity in newly diagnosed AML patients treated with a decitabine-containing regimen, suggesting that BTG1 is a potential marker for predicting the response to decitabine in newly diagnosed AML.Clinical trial registrationChiCTR2000037928.