Unknown

Dataset Information

0

Discovery of a non-canonical GRHL1 binding site using deep convolutional and recurrent neural networks.


ABSTRACT:

Background

Transcription factors regulate gene expression by binding to transcription factor binding sites (TFBSs). Most models for predicting TFBSs are based on position weight matrices (PWMs), which require a specific motif to be present in the DNA sequence and do not consider interdependencies of nucleotides. Novel approaches such as Transcription Factor Flexible Models or recurrent neural networks consequently provide higher accuracies. However, it is unclear whether such approaches can uncover novel non-canonical, hitherto unexpected TFBSs relevant to human transcriptional regulation.

Results

In this study, we trained a convolutional recurrent neural network with HT-SELEX data for GRHL1 binding and applied it to a set of GRHL1 binding sites obtained from ChIP-Seq experiments from human cells. We identified 46 non-canonical GRHL1 binding sites, which were not found by a conventional PWM approach. Unexpectedly, some of the newly predicted binding sequences lacked the CNNG core motif, so far considered obligatory for GRHL1 binding. Using isothermal titration calorimetry, we experimentally confirmed binding between the GRHL1-DNA binding domain and predicted GRHL1 binding sites, including a non-canonical GRHL1 binding site. Mutagenesis of individual nucleotides revealed a correlation between predicted binding strength and experimentally validated binding affinity across representative sequences. This correlation was neither observed with a PWM-based nor another deep learning approach.

Conclusions

Our results show that convolutional recurrent neural networks may uncover unanticipated binding sites and facilitate quantitative transcription factor binding predictions.

SUBMITTER: Proft S 

PROVIDER: S-EPMC10696883 | biostudies-literature | 2023 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Discovery of a non-canonical GRHL1 binding site using deep convolutional and recurrent neural networks.

Proft Sebastian S   Leiz Janna J   Heinemann Udo U   Seelow Dominik D   Schmidt-Ott Kai M KM   Rutkiewicz Maria M  

BMC genomics 20231204 1


<h4>Background</h4>Transcription factors regulate gene expression by binding to transcription factor binding sites (TFBSs). Most models for predicting TFBSs are based on position weight matrices (PWMs), which require a specific motif to be present in the DNA sequence and do not consider interdependencies of nucleotides. Novel approaches such as Transcription Factor Flexible Models or recurrent neural networks consequently provide higher accuracies. However, it is unclear whether such approaches  ...[more]

Similar Datasets

| S-EPMC8075191 | biostudies-literature
| S-EPMC6029131 | biostudies-literature
| S-EPMC11702772 | biostudies-literature
| S-EPMC6010233 | biostudies-other
| S-EPMC5773911 | biostudies-literature
| S-EPMC6748780 | biostudies-literature
| S-EPMC5745637 | biostudies-literature
| S-EPMC6925141 | biostudies-literature
| S-EPMC9044313 | biostudies-literature
| S-EPMC5808454 | biostudies-literature