Project description:Elephants frequently raid crops within their ranges in Africa and Asia. These raids can greatly impact agricultural productivity and food security for farmers. Therefore, there is a need to explore cost-effective measures that would reduce the susceptibility of crops and agricultural fields to elephant raiding, and further promote sustainable human-elephant coexistence. Previous studies have examined the susceptibility of crop fields to elephant raids using field characteristics such as field size and proximity to water sources. However, there are limited studies investigating how different crop types, individually and in their combinations, influence crop susceptibility to elephant raiding. This study utilized data collected from crop fields raided by the African savanna elephant (Loxodonta africana) between 2008 and 2018 in the eastern Okavango Panhandle, northern Botswana. Data on crops grown, number of crop-raiding incidences for each crop, and elephant raiding incidences were recorded for each field assessed. Incidence risks (IR) and field risk value (RV) were computed using an adaptive epidemiological approach. The results showed that elephant raiding incidents varied significantly amongst crop types over space and time (p < .0001). Cereal crops (millet: Eleusine conaracana, maize: Zea mays) incurred a higher number of crop-raiding incidents compared with leguminous crops (cowpea: Vigna unguiculata; groundnut: Arachis hypogea). Field RVs significantly varied depending on which crop was present in the field. There was a significant negative correlation between the number of crop types and the susceptibility of the field to raiding (r = -0.680, p < .0001). Our results suggest that the susceptibility of the fields to elephant raids could be minimized by selecting crop types and combinations less susceptible to elephant damage, thus enhancing food security for local subsistence farmers.
Project description:African lions (Panthera leo) are susceptible to viral diseases of domestic carnivores, including feline calici-virus infection. We report the identification of a novel enteric calicivirus, genetically related to human noroviruses of genogroup IV, in a lion cub that died of severe hemorrhagic enteritis.
Project description:Due to anthropogenic pressures, African lion (Panthera leo) populations in Kenya and Tanzania are increasingly limited to fragmented populations. Lions living on isolated habitat patches exist in a matrix of less-preferred habitat. A framework of habitat patches within a less-suitable matrix describes a metapopulation. Metapopulation analysis can provide insight into the dynamics of each population patch in reference to the system as a whole, and these analyses often guide conservation planning. We present the first metapopulation analysis of African lions. We use a spatially-realistic model to investigate how sex-biased dispersal abilities of lions affect patch occupancy and also examine whether human densities surrounding the remaining lion populations affect the metapopulation as a whole. Our results indicate that male lion dispersal ability strongly contributes to population connectivity while the lesser dispersal ability of females could be a limiting factor. When populations go extinct, recolonization will not occur if distances between patches exceed female dispersal ability or if females are not able to survive moving across the matrix. This has profound implications for the overall metapopulation; the female models showed an intrinsic extinction rate from five-fold to a hundred-fold higher than the male models. Patch isolation is a consideration for even the largest lion populations. As lion populations continue to decline and with local extinctions occurring, female dispersal ability and the proximity to the nearest lion population are serious considerations for the recolonization of individual populations and for broader conservation efforts.
Project description:The complete mitochondrial genome sequence 17,059 bp of Asiatic lion (Panthera leo persica) has been sequenced with the use of next generation sequencing technology using Ion Torrent PGM platform. The complete mitochondrial genome sequence of Asiatic lion consists of 13 protein-coding, 22 tRNA, and two rRNA genes, and 1 control region (CR). The mitochondrial genome is relatively similar to other felid mitochondrial genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases to be typical of those reported for other mammals. The nucleotide composition of Asiatic lion mitogenome shows that there is more A-T% than G-C% on the positive strand as revealed by positive AT and CG skews. The overall base composition is 31.9% of A, 27.2% of C, 14.5% of G, and 26.2% of T. Most of the genes have ATA start codons, except ND1, COX2, ATP8, ATP6, ND4, and ND5 have ATG start codons.
Project description:Understanding the phylogeographic processes affecting endangered species is crucial both to interpreting their evolutionary history and to the establishment of conservation strategies. Lions provide a key opportunity to explore such processes; however, a lack of genetic diversity and shortage of suitable samples has until now hindered such investigation. We used mitochondrial control region DNA (mtDNA) sequences to investigate the phylogeographic history of modern lions, using samples from across their entire range. We find the sub-Saharan African lions are basal among modern lions, supporting a single African origin model of modern lion evolution, equivalent to the 'recent African origin' model of modern human evolution. We also find the greatest variety of mtDNA haplotypes in the centre of Africa, which may be due to the distribution of physical barriers and continental-scale habitat changes caused by Pleistocene glacial oscillations. Our results suggest that the modern lion may currently consist of three geographic populations on the basis of their recent evolutionary history: North African-Asian, southern African and middle African. Future conservation strategies should take these evolutionary subdivisions into consideration.
Project description:Lion lentivirus (LLV; also known as feline immunodeficiency virus of lion, Panthera leo [FIVPle]) is present in free-ranging and captive lion populations at a seroprevalence of up to 100%; however, clinical signs are rarely reported. LLV displays up to 25% interclade sequence diversity, suggesting that it has been in the lion population for some time and may be significantly host adapted. Three captive lions diagnosed with LLV infection displayed lymphocyte subset alterations and progressive behavioral, locomotor, and neuroanatomic abnormalities. No evidence of infection with other potential neuropathogens was found. Antemortem electrodiagnostics and radiologic imaging indicated a diagnosis consistent with lentiviral neuropathy. PCR was used to determine a partial lentiviral genomic sequence and to quantify the proviral burden in eight postmortem tissue specimens. Phylogenetic analysis demonstrated that the virus was consistent with the LLV detected in other captive and free-ranging lions. Despite progressive neurologic signs, the proviral load in tissues, including several regions of the brain, was low; furthermore, gross and histopathologic changes in the brain were minimal. These findings suggest that the symptoms in these animals resulted from nonspecific encephalopathy, similar to human immunodeficiency virus, FIV, and simian immunodeficiency virus (SIV) neuropathies, rather than a direct effect of active viral replication. The association of neuropathy and lymphocyte subset alterations with chronic LLV infection suggests that long-term LLV infection can have detrimental effects for the host, including death. This is similar to reports of aged sootey mangabeys dying from diseases typically associated with end-stage SIV infection and indicates areas for further research of lentiviral infections of seemingly adapted natural hosts, including mechanisms of host control and viral adaptation.
Project description:Factors that limit African lion populations are manifold and well-recognized, but their relative demographic effects remain poorly understood, particularly trophy hunting near protected areas. We identified and monitored 386 individual lions within and around South Luangwa National Park, Zambia, for five years (2008-2012) with trophy hunting and for three additional years (2013-2015) during a hunting moratorium. We used these data with mark-resight models to estimate the effects of hunting on lion survival, recruitment, and abundance. The best survival models, accounting for imperfect detection, revealed strong positive effects of the moratorium, with survival increasing by 17.1 and 14.0 percentage points in subadult and adult males, respectively. Smaller effects on adult female survival and positive effects on cub survival were also detected. The sex-ratio of cubs shifted from unbiased during trophy-hunting to female-biased during the moratorium. Closed mark-recapture models revealed a large increase in lion abundance during the hunting moratorium, from 116 lions in 2012 immediately preceding the moratorium to 209 lions in the last year of the moratorium. More cubs were produced each year of the moratorium than in any year with trophy hunting. Lion demographics shifted from a male-depleted population consisting mostly of adult (≥4 years) females to a younger population with more (>29%) adult males. These data show that the three-year moratorium was effective at growing the Luangwa lion population and increasing the number of adult males. The results suggest that moratoria may be an effective tool for improving the sustainability of lion trophy hunting, particularly where systematic monitoring, conservative quotas, and age-based harvesting are difficult to enforce.
Project description:We compiled all credible repeated lion surveys and present time series data for 47 lion (Panthera leo) populations. We used a Bayesian state space model to estimate growth rate-λ for each population and summed these into three regional sets to provide conservation-relevant estimates of trends since 1990. We found a striking geographical pattern: African lion populations are declining everywhere, except in four southern countries (Botswana, Namibia, South Africa, and Zimbabwe). Population models indicate a 67% chance that lions in West and Central Africa decline by one-half, while estimating a 37% chance that lions in East Africa also decline by one-half over two decades. We recommend separate regional assessments of the lion in the World Conservation Union (IUCN) Red List of Threatened Species: already recognized as critically endangered in West Africa, our analysis supports listing as regionally endangered in Central and East Africa and least concern in southern Africa. Almost all lion populations that historically exceeded ∼ 500 individuals are declining, but lion conservation is successful in southern Africa, in part because of the proliferation of reintroduced lions in small, fenced, intensively managed, and funded reserves. If management budgets for wild lands cannot keep pace with mounting levels of threat, the species may rely increasingly on these southern African areas and may no longer be a flagship species of the once vast natural ecosystems across the rest of the continent.
Project description:Conservation translocations have become an important management tool, particularly for large wildlife species such as the lion (Panthera leo). When planning translocations, the genetic background of populations needs to be taken into account; failure to do so risks disrupting existing patterns of genetic variation, ultimately leading to genetic homogenization, and thereby reducing resilience and adaptability of the species. We urge wildlife managers to include knowledge of the genetic background of source/target populations, as well as species-wide patterns, in any management intervention. We present a hierarchical decision-making tool in which we list 132 lion populations/lion conservation units and provide information on genetic assignment, uncertainty and suitability for translocation for each source/target combination. By including four levels of suitability, from 'first choice' to 'no option', we provide managers with a range of options. To illustrate the extent of international trade of lions, and the potential disruption of natural patterns of intraspecific diversity, we mined the CITES Trade Database for estimated trade quantities of live individuals imported into lion range states during the past 4 decades. We identified 1056 recorded individuals with a potential risk of interbreeding with wild lions, 772 being captive-sourced. Scoring each of the records with our decision-making tool illustrates that only 7% of the translocated individuals were 'first choice' and 73% were 'no option'. We acknowledge that other, nongenetic factors are important in the decision-making process, and hence a pragmatic approach is needed. A framework in which source/target populations are scored based on suitability is not only relevant to lion, but also to other species of wildlife that are frequently translocated. We hope that the presented overview supports managers to include genetics in future management decisions and contributes towards conservation of the lion in its full diversity.
Project description:Climate shifts at decadal scales can have environmental consequences, and therefore, identifying areas that act as environmental refugia is valuable in understanding future climate variability. Here we illustrate how, given appropriate geohydrology, a rift basin and its catchment can buffer vegetation response to climate signals on decadal time-scales, therefore exerting strong local environmental control. We use time-series data derived from Normalised Difference Vegetation Index (NDVI) residuals that record vegetation vigour, extracted from a decadal span of MODIS images, to demonstrate hydrogeological buffering. While this has been described previously it has never been demonstrated via remote sensing and results in relative stability in vegetation vigour inside the delta, compared to that outside. As such the Delta acts as a regional hydro-refugium. This provides insight, not only to the potential impact of future climate in the region, but also demonstrates why similar basins are attractive to fauna, including our ancestors, in regions like eastern Africa. Although vertebrate evolution operates on time scales longer than decades, the sensitivity of rift wetlands to climate change has been stressed by some authors, and this work demonstrates another example of the unique properties that such basins can afford, given the right hydrological conditions.