Project description:Firefighters are occupationally exposed to products of combustion containing polycyclic aromatic hydrocarbons (PAHs) and flame retardants (FRs), potentially contributing to their increased risk for certain cancers. Personal protective equipment (PPE), including firefighter hoods, helps to reduce firefighters' exposure to toxic substances during fire responses by providing a layer of material on which contaminants deposit prior to reaching the firefighters skin. However, over time hoods that retain some contamination may actually contribute to firefighters' systemic dose. We investigated the effectiveness of laundering to reduce or remove contamination on the hoods, specifically PAHs and three classes of FRs: polybrominated diphenyl ethers (PBDEs), non-PBDE flame retardants (NPBFRs), and organophosphate flame retardants (OPFRs). Participants in the study were grouped into crews of 12 firefighters who worked in pairs by job assignment while responding to controlled fires in a single-family residential structure. For each pair of firefighters, one hood was laundered after every scenario and one was not. Bulk samples of the routinely laundered and unlaundered hoods from five pairs of firefighters were collected and analyzed. Residual levels of OPFRs, NPBFRs, and PAHs were lower in the routinely laundered hoods, with total levels of each class of chemicals being 56-81% lower, on average, than the unlaundered hoods. PBDEs, on average, were 43% higher in the laundered hoods, most likely from cross contamination. After this initial testing, four of the five unlaundered exposed hoods were subsequently laundered with other heavily exposed (unlaundered) and unexposed (new) hoods. Post-laundering evaluation of these hoods revealed increased levels of PBDEs, NPBFRs, and OPFRs in both previously exposed and unexposed hoods, indicating cross contamination. For PAHs, there was little evidence of cross contamination and the exposed hoods were significantly less contaminated after laundering (76% reduction; p = 0.011). Further research is needed to understand how residual contamination on hoods could contribute to firefighters' systemic exposures.
Project description:Firefighters are exposed to hazardous chemicals at fire scenes, including polycyclic aromatic hydrocarbons (PAHs) among many others, which pose significant health risks. Current laundering practices are ineffective at removing persistent contaminants from turnout gear, necessitating further research to optimize cleaning methods. This study explores the impact of presoaking prior to the laundering process and the factors that can affect its effectiveness, including the presoaking duration and detergent concentration, in PAH removal when laundering. For this, contaminated fabric swatches were subjected to various presoaking durations (1, 3, and 12 h) and detergent concentrations (99:1 and 90:10 water-to-detergent ratios) before undergoing bench-scale washing. The cleaning efficacy was assessed for 16 PAH compounds, including both low-molecular-weight (LMW) PAHs and high-molecular-weight (HMW) PAHs. Moreover, the removal mechanisms of PAHs from turnout gear were fundamentally explained using partition coefficients and standard affinities with different parameters during washing. The results demonstrate that 3 h and 12 h of presoaking lead to 2.8 and 4.3 times greater HMW PAH removal, respectively. After 12 h of presoaking in a 90:10 water-to-detergent ratio, 97% of the LMW PAHs and 78% of the HMW PAHs were removed, compared to only an 11% removal of the HMW PAHs with a 99:1 ratio. Additionally, direct washing with a 90:10 ratio achieved comparable efficacy to that of presoaking with the same water-to-detergent ratio, indicating the crucial role of detergent concentration during laundering. These findings offer valuable insights for optimizing firefighter safety practices, emphasizing the role of presoaking and the appropriate methods to perform presoaking to mitigate firefighters' occupational exposure risks to toxic substances and ensure gear reliability.
Project description:In 2022, the occupation of firefighting was categorized as a "Group 1" carcinogen, meaning it is known to be carcinogenic to humans. The personal protective equipment that structural firefighters wear is designed to safeguard them from thermal, physical, and chemical hazards while maintaining thermo-physiological comfort. Typically, the outer layer of structural turnout gear is finished with a durable water and oil-repellent (DWR) based on per- and polyfluoroalkyl substances (PFAS) that helps limit exposure to water and hazardous liquids. The PFAS-based aqueous emulsion typically used in DWR finishes is highly persistent and can cause various health problems if absorbed into the body through ingestion, inhalation, and/or dermal absorption. In response, the U.S. Fire Service has begun using non-PFAS water repellants in firefighter turnout gear. This study aims to evaluate the performance of both traditional PFAS-based and alternative non-PFAS outer shell materials. The study involved exposing both PFAS-based and non-PFAS DWR outer shell materials in turnout composites to simulated job exposures (i.e., weathering, thermal exposure, and laundering) that artificially aged the materials. After exposures, samples were evaluated for repellency, durability, thermal protection, and surface chemistry analysis to determine any potential performance trade-offs that may exist. Non-PFAS outer shell fabrics were found not to be diesel/oil-repellent, posing a potential flammability hazard if exposed to diesel and subsequent flame on an emergency response. Both PFAS-based and non-PFAS sets of fabrics performed similarly in terms of thermal protective performance, tearing strength, and water repellency. The surface analysis suggests that both PFAS and non-PFAS chemistries can degrade and shed from fabrics during the aging process. The study indicates that firefighters should be educated and trained regarding the potential performance trade-offs, such as oil absorption and flammability concerns when transitioning to non-PFAS outer shell materials.
Project description:The US fire service has become acutely aware of the need to clean PPE after fires. However, there is concern that damage from repeated cleaning may impact critical protection from fireground risk. Using a protocol that included repeated simulated fireground exposures (between 0 and 40 cycles) and/or repeated cleaning with techniques common in the fire service, we found that several important protective properties of NFPA 1971 compliant turnout gear are significantly changed. Outer shell and thermal liner tear strength showed a statistically significant reduction when laundered as compared to wet or dry decontamination. Larger changes in outer shell tear strength resulted when the coat closure incorporated hook & dee clasps as compared with garments using zippered closures. Total Heat Loss (THL) was reduced for all samples that underwent any form of cleaning while Thermal Protective Performance (TPP) was only increased in the gear that was laundered. These results suggest that some important protective properties of bunker gear can be decreased after repeated exposure/cleaning cycles relative to their levels when tested in a new condition. For the specific materials tested, outer shell trap tear strength in the fill direction and seam strength dropped below NFPA 1971 requirements after 40 laundering cycles. The findings for this study may have utility for setting preconditions for the measurement of certain performance properties in future editions of NFPA 1971.
Project description:Lipopolysaccharides (LPS) are highly toxic compounds, even at a trace amount. When recombinant proteins are produced in E. coli, it is inevitable that LPS contaminates. However, LPS removal is still technically challenging and costly due to the high degree of solubility in a wide range of solvents. In this study, we explored the possibility of using the N-terminal region containing cysteine-rich, EGF-like, and sushi1-3 domains (CES3) of Factor C from the horseshoe crab Carcinoscorpius rotundicauda to develop a platform to remove LPS from recombinant proteins. We expressed CES3 as part of a recombinant protein, BiP:NT:CBM3:SUMO:CES3:His:HDEL, in Nicotiana benthamiana and found that purified or microcrystalline cellulose (MCC) bead-immobilised CES3 showed strong binding to LPS-containing E. coli. To produce CES3:CBM3 in an LPS-free environment, we generated Arabidopsis transgenic plants harbouring a recombinant gene, BiP:NT:SUMO:CES3:CBM3:HDEL, and found that transgenic plants mainly produce CES3:CBM3:His:HDEL, a truncated version of BiP:NT:SUMO:CES3:CBM3:HDEL via endogenous protease-mediated proteolytic processing in vivo. CES3:CBM3:HDEL purified from Arabidopsis plant extracts and immobilised onto MCC beads removed LPS contamination from protein samples. We propose that the CES3:CBM3 fusion protein produced in plants and immobilised on MCC beads can be a robust and easy platform for LPS removal from recombinant proteins.
Project description:Surfactants are widely used in the synthesis of nanoparticles, as they have a remarkable ability to direct their growth to obtain well-defined shapes and sizes. However, their post-synthesis removal is a challenge, and the methods used often result in morphological changes that defeat the purpose of the initial controlled growth. Moreover, after the removal of surfactants, the highly active surfaces of nanomaterials may undergo structural reconstruction by exposure to a different environment. Thus, ex situ characterization after air exposure may not reflect the effect of the cleaning methods. Here, combining X-ray photoelectron spectroscopy, in situ infrared reflection absorption spectroscopy, and environmental transmission electron microscopy measurements with CO probe experiments, we investigated different surfactant-removal methods to produce clean metallic Pt nanoparticles from surfactant-encapsulated ones. It was demonstrated that both ultraviolet-ozone (UV-ozone) treatment and room temperature O2 plasma treatment led to the formation of Pt oxides on the surface after the removal of the surfactant. On the other hand, when H2 was used for plasma treatment, both the Pt0 oxidation state and nanoparticle size distribution were preserved. In addition, H2 plasma treatment can reduce Pt oxides after O2-based treatments, resulting in metallic nanoparticles with clean surfaces. These findings provide a better understanding of the various options for surfactant removal from metal nanoparticles and point toward non-thermal plasmas as the best route if the integrity of the nanoparticle needs to be preserved.
Project description:Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which may be attributable to environmental occupational exposures. Untargeted metabolomics was applied to characterize this suite of environmental exposures and biological changes in response to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be important regulators of firefighter's increased risk for urinary tract cancers.
Project description:ObjectiveTo describe the frequency of work-related asthma (WRA) and characteristics of individuals with exposure to cleaning products 1998 to 2012, compared with 1993 to 1997.MethodsCases of WRA from products used for cleaning or disinfecting surfaces were identified from California, Massachusetts, Michigan (1998 to 2012), New Jersey (1998 to 2011), and New York (2009 to 2012).ResultsThere were 1199 (12.4%) cleaning product cases among all 9667 WRA cases; 77.8% women, 62.1% white non-Hispanic, and average age of 43 years. The highest percentages worked in healthcare (41.1%), and were building cleaners (20.3%), or registered nurses (14.1%).ConclusionsThe percentage of WRA cases from exposure to cleaning products from 1998 to 2012 was unchanged from 1993 to 1997 indicating that continued and additional prevention efforts are needed to reduce unnecessary use, identify safer products, and implement safer work processes.