Project description:Type III secretion systems (TTSSs) utilized by enteropathogenic bacteria require the presence of small, acidic virulence-associated chaperones for effective host cell infection. We adopted a combination of biochemical and cellular techniques to define the chaperone binding domains (CBDs) in the translocators IpaB and IpaC associated with the chaperone IpgC from Shigella flexneri. We identified a novel CBD in IpaB and furthermore precisely mapped the boundaries of the CBDs in both translocator proteins. In IpaC a single binding domain associates with IpgC. In IpaB, we show that the binding of the newly characterized CBD is essential in maintaining the ternary arrangement of chaperone-translocator complex. This hitherto unknown function is reflected in the co-crystal structure as well, with an IpgC dimer bound to an IpaB fragment comprising both CBDs. Moreover, in the absence of this novel CBD the IpaB/IpgC complex aggregates. This dual-recognition of a domain in the protein by the chaperone in facilitating the correct chaperone-substrate organization describes a new function for the TTSS associated chaperone-substrate complexes.
Project description:The delivery of virulence factors into host cells through type III secretion systems is essential for enterobacterial pathogenesis. Molecular chaperones bind specifically to virulence factors in the bacterial cytosol before secretion. Invasion plasmid gene C (IpgC) is a chaperone that binds 2 essential virulence factors of Shigella: invasion plasmid antigens (Ipa) B and C. Here, we report the crystal structure of IpgC alone and in complex with the chaperone binding domain (CBD) of IpaB. The chaperone captures the CBD in an extended conformation that is stabilized by conserved residues lining the cleft. Analysis of the cocrystal structure reveals a sequence motif that is functional in the IpaB translocator class from different bacteria as determined by isothermal titration calorimetry. Our results show how translocators are chaperoned and may allow the design of inhibitors of enterobacterial diseases.
Project description:Type III secretion (TTS) systems are used by many Gram-negative pathogens to inject virulence proteins into the cells of their hosts. Several of these virulence effectors require TTS chaperones that maintain them in a secretion-competent state. Whereas most chaperones bind only one effector, Spa15 from the human pathogen Shigella flexneri and homologous chaperones bind several seemingly unrelated effectors, and were proposed to form a special subgroup. Its 1.8 A crystal structure confirms this specific classification, showing that Spa15 has the same fold as other TTS effector chaperones, but forms a different dimer. The presence of hydrophobic sites on the Spa15 surface suggests that the different Spa15 effectors all possess similar structural elements that can bind these sites. Furthermore, the Spa15 structure reveals larger structural differences between class I chaperones than previously anticipated, which does not support the hypothesis that chaperone-effector complexes are structurally conserved and function as three-dimensional secretion signals.
Project description:Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.
Project description:SicA is a member of the class II chaperones in type III secretion systems which bind to the pore-forming translocators in the bacterial cytoplasm and prevent them from premature association and degradation. In this study, SicA from Salmonella enterica serovar Typhimurium was overexpressed, purified and crystallized using PEG 8000 as the precipitant. X-ray diffraction data were collected using synchrotron radiation and processed at 3.5 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 180.4, b = 94.1, c = 131.8 Å, β = 130.9°. There may be eight monomers in the crystallographic asymmetric unit, corresponding to a V(M) of 2.52 Å(3) Da(-1) and a solvent content of 51.1%. This suggests an oligomerization state that differs from those of previously reported type III secretion chaperones.
Project description:Bacterial Type III Secretion Systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or deliver Type III Secretion effectors directly into eukaryotic host cell cytoplasm. Shigella, the causing agent of bacillary dysentery or shigellosis, bears a set of T3SS proteins termed translocators that form a pore in the host cell membrane. IpaB, the major translocator of the system, is a key factor in promoting Shigella pathogenicity. Prior to secretion, IpaB is maintained inside the bacterial cytoplasm in a secretion competent folding state thanks to its cognate chaperone IpgC. IpgC couples T3SS activation to transcription of effector genes through its binding to MxiE, probably after the delivery of IpaB to the secretion export gate. Small Angle X-ray Scattering experiments and modeling reveal that IpgC is found in different oligomeric states in solution, as it forms a stable heterodimer with full-length IpaB in contrast to an aggregation-prone homodimer in the absence of the translocator. These results support a stoichiometry of interaction 1:1 in the IpgC/IpaB complex and the multi-functional nature of IpgC under different T3SS states.
Project description:Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO.
Project description:The type III secretion system (T3SS) is a large, transmembrane protein machinery used by various pathogenic gram-negative bacteria to transport virulence factors into the host cell during infection. Understanding the structure of T3SSs is crucial for future developments of therapeutics that could target this system. However, much of the knowledge about the structure of T3SS is available only for Salmonella, and it is unclear how this large assembly is conserved across species. Here, we combined cryo-electron microscopy, cross-linking mass spectrometry, and integrative modeling to determine the structure of the T3SS needle complex from Shigella flexneri. We show that the Shigella T3SS exhibits unique features distinguishing it from other structurally characterized T3SSs. The secretin pore complex adopts a new fold of its C-terminal S domain and the pilotin MxiM[SctG] locates around the outer surface of the pore. The export apparatus structure exhibits a conserved pseudohelical arrangement but includes the N-terminal domain of the SpaS[SctU] subunit, which was not present in any of the previously published virulence-related T3SS structures. Similar to other T3SSs, however, the apparatus is anchored within the needle complex by a network of flexible linkers that either adjust conformation to connect to equivalent patches on the secretin oligomer or bind distinct surface patches at the same height of the export apparatus. The conserved and unique features delineated by our analysis highlight the necessity to analyze T3SS in a species-specific manner, in order to fully understand the underlying molecular mechanisms of these systems. The structure of the type III secretion system from Shigella flexneri delineates conserved and unique features, which could be used for the development of broad-range therapeutics.
Project description:Shigella comprises four species of human-restricted pathogens causing bacillary dysentery. While Shigella possesses multiple genetic loci contributing to virulence, a type III secretion system (T3SS) is its primary virulence factor. The Shigella T3SS nanomachine consists of four major assemblies: the cytoplasmic sorting platform; the envelope-spanning core/basal body; an exposed needle; and a needle-associated tip complex with associated translocon that is inserted into host cell membranes. The initial subversion of host cell activities is carried out by the effector functions of the invasion plasmid antigen (Ipa) translocator proteins, with the cell ultimately being controlled by dedicated effector proteins that are injected into the host cytoplasm though the translocon. Much of the information now available on the T3SS injectisome has been accumulated through collective studies on the T3SS from three systems, those of Shigella flexneri, Salmonella typhimurium and Yersinia enterocolitica/Yersinia pestis. In this review, we will touch upon the important features of the T3SS injectisome that have come to light because of research in the Shigella and closely related systems. We will also briefly highlight some of the strategies being considered to target the Shigella T3SS for disease prevention.
Project description:VirA, a secreted effector protein from Shigella sp., has been shown to be necessary for its virulence. It was also reported that VirA might be related to papain-like cysteine proteases and cleave alpha-tubulin, thus facilitating intracellular spreading. We have now determined the crystal structure of VirA at 3.0 A resolution. The shape of the molecule resembles the letter "V," with the residues in the N-terminal third of the 45-kDa molecule (some of which are disordered) forming one clearly identifiable domain, and the remainder of the molecule completing the V-like structure. The fold of VirA is unique and does not resemble that of any known protein, including papain, although its N-terminal domain is topologically similar to cysteine protease inhibitors such as stefin B. Analysis of the sequence conservation between VirA and its Escherichia coli homologs EspG and EspG2 did not result in identification of any putative protease-like active site, leaving open a possibility that the biological function of VirA in Shigella virulence may not involve direct proteolytic activity.