Project description:Identifying workers' activities is crucial for ensuring the safety and productivity of the human workforce on construction sites. Many studies implement vision-based or inertial-based sensors to construct 3D human skeletons for automated postures and activity recognition. Researchers have developed enormous and heterogeneous datasets for generic motion and artificially intelligent models based on these datasets. However, the construction-related motion dataset and labels should be specifically designed, as construction workers are often exposed to awkward postures and intensive physical tasks. This study developed a small construction-related activity dataset with an in-lab experiment and implemented the datasets to manually label a large-scale construction motion data library (CML) for activity recognition. The developed CML dataset contains 225 types of activities and 146,480 samples; among them, 60 types of activities and 61,275 samples are highly related to construction activities. To verify the dataset, five widely applied deep learning algorithms were adopted to examine the dataset, and the usability, quality, and sufficiency were reported. The average accuracy of models without tunning can reach 74.62% to 83.92%.
Project description:Damage detection is one of the critical challenges in operating soft robots in an industrial setting. In repetitive tasks, even a small cut or fatigue can propagate to large damage ceasing the complete operation process. Although research has shown that damage detection can be performed through an embedded sensor network, this approach leads to complicated sensorized systems with additional wiring and equipment, made using complex fabrication processes and often compromising the flexibility of the soft robotic body. Alternatively, in this paper, we proposed a non-invasive approach for damage detection and localization on soft grippers. The essential idea is to track changes in non-linear dynamics of a gripper due to possible damage, where minor changes in material and morphology lead to large differences in the force and torque feedback over time. To test this concept, we developed a classification model based on a bidirectional long short-time memory (biLSTM) network that discovers patterns of dynamics changes in force and torque signals measured at the mounting point. To evaluate this model, we employed a two-fingered Fin Ray gripper and collected data for 43 damage configurations. The experimental results show nearly perfect damage detection accuracy and 97% of its localization. We have also tested the effect of the gripper orientation and the length of time-series data. By shaking the gripper with an optimal roll angle, the localization accuracy can exceed 95% and increase further with additional gripper orientations. The results also show that two periods of the gripper oscillation, i.e., roughly 50 data points, are enough to achieve a reasonable level of damage localization.
Project description:This paper aims to explore the application of visual image big data (BD) in art management, and proposes and develops a new art management model. First of all, this study conducted extensive research on the overview and application of big data, focusing on analyzing the characteristics of big data and its characteristics and application methods in art management. By introducing image processing (IP) technology, this paper expounds on the application of visual image technology in art management in detail and discusses the classification of computer vision images to determine its application direction. On this basis, this paper proposes the application of visual images and big data in art management from three aspects: the accurate acquisition of visual images, the development model of art management, and the development of visual image technology in art resource management and teaching, and strengthens the development model of art management based on IP algorithm. Experiments and surveys show that the art management model development system built by the newly introduced visual image technology, big data technology, and IP algorithm can increase user satisfaction by 24 %. This result shows that the new model has a significant effect in improving the efficiency and quality of art management, providing strong technical support for the field of art management, while also providing designers with a more accurate tool for assessing market trends, helping to adhere to and promote good design concepts.
Project description:We present a model of cytoplasmically driven microtubule-based pronuclear motion in the single-celled Caenorhabditis elegans embryo. In this model, a centrosome pair at the male pronucleus initiates stochastic microtubule (MT) growth. These MTs encounter motor proteins, distributed throughout the cytoplasm, that attach and exert a pulling force. The consequent MT-length-dependent pulling forces drag the pronucleus through the cytoplasm. On physical grounds, we assume that the motor proteins also exert equal and opposite forces on the surrounding viscous cytoplasm, here modeled as an incompressible Newtonian fluid constrained within an ellipsoidal eggshell. This naturally leads to streaming flows along the MTs. Our computational method is based on an immersed boundary formulation that allows for the simultaneous treatment of fluid flow and the dynamics of structures immersed within. Our simulations demonstrate that the balance of MT pulling forces and viscous nuclear drag is sufficient to move the pronucleus, while simultaneously generating minus-end directed flows along MTs that are similar to the observed movement of yolk granules toward the center of asters. Our simulations show pronuclear migration, and moreover, a robust pronuclear centration and rotation very similar to that observed in vivo. We find also that the confinement provided by the eggshell significantly affects the internal dynamics of the cytoplasm, increasing by an order of magnitude the forces necessary to translocate and center the pronucleus.
Project description:Marker-based Optical Motion Capture (OMC) systems and associated musculoskeletal (MSK) modelling predictions offer non-invasively obtainable insights into muscle and joint loading at an in vivo level, aiding clinical decision-making. However, an OMC system is lab-based, expensive, and requires a line of sight. Inertial Motion Capture (IMC) techniques are widely-used alternatives, which are portable, user-friendly, and relatively low-cost, although with lesser accuracy. Irrespective of the choice of motion capture technique, one typically uses an MSK model to obtain the kinematic and kinetic outputs, which is a computationally expensive tool increasingly well approximated by machine learning (ML) methods. Here, an ML approach is presented that maps experimentally recorded IMC input data to the human upper-extremity MSK model outputs computed from ('gold standard') OMC input data. Essentially, this proof-of-concept study aims to predict higher-quality MSK outputs from the much easier-to-obtain IMC data. We use OMC and IMC data simultaneously collected for the same subjects to train different ML architectures that predict OMC-driven MSK outputs from IMC measurements. In particular, we employed various neural network (NN) architectures, such as Feed-Forward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs) (vanilla, Long Short-Term Memory, and Gated Recurrent Unit) and a comprehensive search for the best-fit model in the hyperparameters space in both subject-exposed (SE) as well as subject-naive (SN) settings. We observed a comparable performance for both FFNN and RNN models, which have a high degree of agreement (ravg,SE,FFNN=0.90±0.19, ravg,SE,RNN=0.89±0.17, ravg,SN,FFNN=0.84±0.23, and ravg,SN,RNN=0.78±0.23) with the desired OMC-driven MSK estimates for held-out test data. The findings demonstrate that mapping IMC inputs to OMC-driven MSK outputs using ML models could be instrumental in transitioning MSK modelling from 'lab to field'.
Project description:Automatic emotion recognition is of great value in many applications, however, to fully display the application value of emotion recognition, more portable, non-intrusive, inexpensive technologies need to be developed. Human gaits could reflect the walker's emotional state, and could be an information source for emotion recognition. This paper proposed a novel method to recognize emotional state through human gaits by using Microsoft Kinect, a low-cost, portable, camera-based sensor. Fifty-nine participants' gaits under neutral state, induced anger and induced happiness were recorded by two Kinect cameras, and the original data were processed through joint selection, coordinate system transformation, sliding window gauss filtering, differential operation, and data segmentation. Features of gait patterns were extracted from 3-dimentional coordinates of 14 main body joints by Fourier transformation and Principal Component Analysis (PCA). The classifiers NaiveBayes, RandomForests, LibSVM and SMO (Sequential Minimal Optimization) were trained and evaluated, and the accuracy of recognizing anger and happiness from neutral state achieved 80.5% and 75.4%. Although the results of distinguishing angry and happiness states were not ideal in current study, it showed the feasibility of automatically recognizing emotional states from gaits, with the characteristics meeting the application requirements.
Project description:For the analysis of art works, accurate identification of various elements of works through deep learning methods is helpful for artists to appreciate and learn works. In this study, we leverage deep learning methodologies to precisely identify the diverse elements within graphic art designs, aiding artists in their appreciation and learning process. Our approach involves integrating the attention mechanism into an enhanced Single Shot MultiBox Detector (SSD) model to refine the recognition of artistic design elements. Additionally, we improve the feature fusion structure of the SSD model by incorporating long-range attention mechanism information, thus enhancing target detection accuracy. Moreover, we refine the Feature Pyramid Transformer (FPT) attention mechanism model to ensure the output feature map aligns effectively with the requirements of object detection. Our empirical findings demonstrate that our refined approach outperforms the original SSD algorithm across all four evaluation metrics, exhibiting improvements of 1.52%, 1.89%, 3.09%, and 2.57%, respectively. Qualitative tests further illustrate the accuracy, robustness, and universality of our proposed method, particularly in scenarios characterized by dense artistic elements and challenging-to-distinguish categories within art compositions.
Project description:PurposeIntravoxel incoherent motion (IVIM) analysis gives information on tissue diffusion and perfusion and may thus have a potential for e.g. tumor tissue characterization. This work aims to study if clustering based on IVIM parameter maps can identify tumor subregions, and to assess the relevance of obtained subregions by histological analysis.MethodsFourteen mice with human neuroendocrine tumors were examined with diffusion-weighted imaging to obtain IVIM parameter maps. Gaussian mixture models with IVIM maps from all tumors as input were used to partition voxels into k clusters, where k = 2 was chosen for further analysis based on goodness of fit. Clustering was performed with and without the perfusion-related IVIM parameter D* , and with and without including spatial information. The validity of the clustering was assessed by comparison with corresponding histologically stained tumor sections. A Ki-67-based index quantifying the degree of tumor proliferation was considered appropriate for the comparison based on the obtained cluster characteristics.ResultsThe clustering resulted in one class with low diffusion and high perfusion and another with slightly higher diffusion and low perfusion. Strong agreement was found between tumor subregions identified by clustering and subregions identified by histological analysis, both regarding size and spatial agreement. Neither D* nor spatial information had substantial effects on the clustering results.ConclusionsThe results of this study show that IVIM parameter maps can be used to identify tumor subregions using a data-driven framework based on Gaussian mixture models. In the studied tumor model, the obtained subregions showed agreement with proliferative activity.
Project description:We introduce a data consistency based retrospective motion correction method, TArgeted Motion Estimation and Reduction (TAMER), to correct for patient motion in Magnetic Resonance Imaging (MRI). Specifically, a motion free image and motion trajectory are jointly estimated by minimizing the data consistency error of a SENSE forward model including rigid-body subject motion. In order to efficiently solve this large non-linear optimization problem, we employ reduced modeling in the parallel imaging formulation by assessing only a subset of target voxels at each step of the motion search. With this strategy we are able to effectively capture the tight coupling between the image voxel values and motion parameters. We demonstrate in simulations TAMER's ability to find similar search directions compared to a full model, with an average error of 22%, vs. 73% error when using previously proposed alternating methods. The reduced model decreased the computation time fold compared to a full image volume evaluation. In phantom experiments, our method successfully mitigates both translation and rotation artifacts, reducing image RMSE compared to a motion-free gold standard from 21% to 14% in a translating phantom, and from 17% to 10% in a rotating phantom. Qualitative image improvements are seen in human imaging of moving subjects compared to conventional reconstruction. Finally, we compare in vivo image results of our method to the state-of-the-art.
Project description:Head motion during PET scans causes image quality degradation, decreased concentration in regions with high uptake and incorrect outcome measures from kinetic analysis of dynamic datasets. Previously, we proposed a data-driven method, center of tracer distribution (COD), to detect head motion without an external motion tracking device. There, motion was detected using one dimension of the COD trace with a semiautomatic detection algorithm, requiring multiple user defined parameters and manual intervention. In this study, we developed a new data-driven motion detection algorithm, which is automatic, self-adaptive to noise level, does not require user-defined parameters and uses all three dimensions of the COD trace (3DCOD). 3DCOD was first validated and tested using 30 simulation studies (18F-FDG, N = 15; 11C-raclopride (RAC), N = 15) with large motion. The proposed motion correction method was tested on 22 real human datasets, with 20 acquired from a high resolution research tomograph (HRRT) scanner (18F-FDG, N = 10; 11C-RAC, N = 10) and 2 acquired from the Siemens Biograph mCT scanner. Real-time hardware-based motion tracking information (Vicra) was available for all real studies and was used as the gold standard. 3DCOD was compared to Vicra, no motion correction (NMC), one-direction COD (our previous method called 1DCOD) and two conventional frame-based image registration (FIR) algorithms, i.e., FIR1 (based on predefined frames reconstructed with attenuation correction) and FIR2 (without attenuation correction) for both simulation and real studies. For the simulation studies, 3DCOD yielded -2.3 ± 1.4% (mean ± standard deviation across all subjects and 11 brain regions) error in region of interest (ROI) uptake for 18F-FDG (-3.4 ± 1.7% for 11C-RAC across all subjects and 2 regions) as compared to Vicra (perfect correction) while NMC, FIR1, FIR2 and 1DCOD yielded -25.4 ± 11.1% (-34.5 ± 16.1% for 11C- RAC), -13.4 ± 3.5% (-16.1 ± 4.6%), -5.7 ± 3.6% (-8.0 ± 4.5%) and -2.6 ± 1.5% (-5.1 ± 2.7%), respectively. For real HRRT studies, 3DCOD yielded -0.3 ± 2.8% difference for 18F-FDG (-0.4 ± 3.2% for 11C-RAC) as compared to Vicra while NMC, FIR1, FIR2 and 1DCOD yielded -14.9 ± 9.0% (-24.5 ± 14.6%), -3.6 ± 4.9% (-13.4 ± 14.3%), -0.6 ± 3.4% (-6.7 ± 5.3%) and -1.5 ± 4.2% (-2.2 ± 4.1%), respectively. In summary, the proposed motion correction method yielded comparable performance to the hardware-based motion tracking method for multiple tracers, including very challenging cases with large frequent head motion, in studies performed on a non-TOF scanner.