Project description:In recent years, rising temperatures have caused heat stress (HS), which has had a significant impact on livestock production and growth, presenting considerable challenges to the agricultural industry. Research has shown that miR-425-5p regulates cellular proliferation in organisms. However, the specific role of miR-425-5p in bovine mammary epithelial cells (BMECs) remains to be determined. The aim of this study was to investigate the potential of miR-425-5p in alleviating the HS-induced proliferation stagnation in BMECs. The results showed that the expression of miR-425-5p significantly decreased when BMEC were exposed to HS. However, the overexpression of miR-425-5p effectively alleviated the inhibitory effect of HS on BMEC proliferation. Furthermore, RNA sequencing analysis revealed 753 differentially expressed genes (DEGs), comprising 361 upregulated and 392 downregulated genes. Some of these genes were associated with proliferation and thermogenesis through enrichment analyses. Further experimentation revealed that TOB2, which acts as a target gene of miR-425-5p, is involved in the regulatory mechanism of BMEC proliferation. In summary, this study suggests that miR-425-5p can promote the proliferation of BMECs by regulating TOB2. The miR-425-5p/TOB2 axis may represent a potential pathway through which miR-425-5p ameliorates the proliferation stagnation of BMECs induced by HS.
Project description:ObjectiveαS1-Casein is more closely associated with milk allergic reaction than other milk protein components. microRNA (miRNA) is a class of small non-coding RNAs that modulate multiple biological progresses by the target gene. However, the post-transcriptional regulation of αS1-casein expression by miRNA in ruminants remains unclear. This study aims to explore the regulatory roles of miR-380-3p on αS1-casein synthesis in goat mammary epithelial cells (GMEC).MethodsαS1-Casein gene and miR-380-3p expression was measured in dairy goat mammary gland by quantitative real-time polymerase chain reaction (qRT-PCR). miR-380-3p overexpression and knockdown were performed by miR-380-3p mimic or inhibitor in GMEC. The effect of miR-380-3p on αS1-casein synthesis was detected by qRT-PCR, western blot, luciferase and chromatin immunoprecipitation assays in GMEC.ResultsCompared with middle-lactation period, αS1-casein gene expression is increased, while miR-380-3p expression is decreased during peak-lactation of dairy goats. miR-380-3p reduces αS1-casein abundance by targeting the 3'-untranslated region (3'UTR) of αS1-casein mRNA in GMEC. miR-380-3p enhances β-casein expression and signal transducer and activator of transcription 5a (STAT5a) activity. Moreover, miR-380-3p promotes β-casein abundance through target gene αS1-casein, and activates β-casein transcription by enhancing the binding of STAT5 to β-casein gene promoter region.ConclusionmiR-380-3p decreases αS1-casein expression and increases β-casein expression by targeting αS1-casein in GMEC, which supplies a novel strategy for reducing milk allergic potential and building up milk quality in ruminants.
Project description:Bovine leukemia virus (BLV) is widely prevalent worldwide and can persistently infect mammary epithelial cells in dairy cows, leading to reduced cellular antimicrobial capacity. BLV-encoded microRNAs (BLV-miRNAs) can modify host genes and promote BLV replication. We previously showed that BLV-miR-B1-5p significantly promoted Staphylococcus aureus (S. aureus) adhesion to bovine mammary epithelial (MAC-T) cells; however, the pathway responsible for this effect remained unclear. This study aims to examine how BLV-miR-B1-5p promotes S. aureus adhesion to MAC-T cells via miRNA target gene prediction and validation. Target site prediction showed that BLV-miR-B1-5p could target the mucin family gene mucin 1 (MUC1). Real-time polymerase chain reaction, immunofluorescence, and dual luciferase reporter assay further confirmed that BLV-miR-B1-5p could target and inhibit the expression of MUC1 in bovine MAC-T cells while interfering with the expression of MUC1 promoted S. aureus adhesion to MAC-T cells. These results indicate that BLV-miR-B1-5p promotes S. aureus adhesion to mammary epithelial cells by targeting MUC1.
Project description:BackgroundMicroRNA-196a-5p (miR-196a-5p) has been reported to be involved in the metastatic process of several cancers. In present work, we aimed to investigate the effects of miR-196a-5p and its potential target IκBα on migration, invasion and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells.MethodsCCK-8 assay, wound healing assay and cell invasion assay were performed to evaluate the cell proliferation, migration and invasion. In vivo metastasis models were used to investigate the tumor metastasis ability. Real-time PCR, immunofluorescence staining or western blot were utilized to detect the expression of miR-196a-5p, IκBα, p-IκBα, nuclear p65 and EMT markers including E-cadherin, N-cadherin and fibronectin. Dual luciferase reporter assay was carried out to determine whether there is a direct interaction between miR-196a-5p and IκBα mRNA.ResultsUsing SW480 cell with miR-196-5p over-expressed plus SW620 and HCT116 cells with miR-196a-5p knockdown, we found that miR-196a-5p promoted cell proliferation, migration and invasion in vitro and facilitated liver metastasis in vivo. We also observed that miR-196a-5p knockdown or NF-κB pathway inhibition up-regulated E-cadherin while down-regulated N-cadherin and fibronectin. By contrast, miR-196a-5p over-expression promoted EMT process of CRC. Data of dual luciferase reporter assay indicated that miR-196a-5p targeted the IκBα. Moreover, miR-196a-5p down-regulated IκBα expression while up-regulated nuclear p65 expression. Additionally, over-expression of IκBα in CRC cells attenuated the effects of miR-196a-5p on cell migration, invasion and EMT.ConclusionsmiR-196a-5p may play a key role in EMT, invasion and metastasis of CRC cells via targeting the IκBα.
Project description:BackgroundCisplatin resistance is a major challenge for advanced head and neck cancer (HNC). Understanding the underlying mechanisms and developing effective strategies against cisplatin resistance are highly desired in the clinic. However, how tumor stroma modulates HNC growth and chemoresistance is unclear.ResultsWe show that cancer-associated fibroblasts (CAFs) are intrinsically resistant to cisplatin and have an active role in regulating HNC cell survival and proliferation by delivering functional miR-196a from CAFs to tumor cells via exosomes. Exosomal miR-196a then binds novel targets, CDKN1B and ING5, to endow HNC cells with cisplatin resistance. Exosome or exosomal miR-196a depletion from CAFs functionally restored HNC cisplatin sensitivity. Importantly, we found that miR-196a packaging into CAF-derived exosomes might be mediated by heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). Moreover, we also found that high levels of plasma exosomal miR-196a are clinically correlated with poor overall survival and chemoresistance.ConclusionsThe present study finds that CAF-derived exosomal miR-196a confers cisplatin resistance in HNC by targeting CDKN1B and ING5, indicating miR-196a may serve as a promising predictor of and potential therapeutic target for cisplatin resistance in HNC.
Project description:BackgroundMicroRNAs have important roles in many biological processes. However, the role of miR-139 in healthy mammary gland remains unclear. The objective of this study was to investigate the effects of miR-139 on lactation in dairy cows.ResultsHere, we found that miR-139 was down-regulated in mid-lactation dairy cow mammary tissues compared with mid-pregnancy tissues. Then, we prioritized two of potential target genes of miR-139 in cow, growth hormone receptor (GHR) and type I insulin-like growth factor receptor (IGF1R) for further functional studies based on their roles in lactation processes. Dual luciferase reporter assays validated direct binding of miR-139 to the 3'- untranslated region (UTR) of GHR and IGF1R. Moreover, over-expression or silencing of miR-139 affected mRNA levels of GHR and IGF1R in cultured bovine mammary epithelial cells (BMECs). Furthermore, over-expression of miR-139 decreased protein levels of β-casein, proliferation in mammary epithelial cell, and the protein levels of IGF1R and key members of the GHR or IGF1R pathways as well, whereas silencing miR-139 produced the opposite result. Among these signal molecules, signal transducer and activator of transcription-5 (STAT5), protein kinase B (also known as AKT1), mammalian target of rapamycin (mTOR), and p70-S6 Kinase (p70S6K) are involed in β-casein synthesis, and Cyclin D1 is involved in cell proliferation. In addition, silencing GHR decreased protein levels of β-casein, IGF1R, and key members of the IGF1R pathway, whereas co-silencing miR-139 and GHR rescued the expression of GHR and reversed GHR silencing effects.ConclusionsOur results demonstrate that GHR and IGF1R are target genes of miR-139 in dairy cow. MiR-139 suppresses β-casein synthesis and proliferation in BMECs by targeting the GHR and IGF1R signaling pathways.
Project description:Mastitis is a complex inflammatory disease caused by pathogenic infection of mammary tissue in dairy cows. The molecular mechanism behind its occurrence, development, and regulation consists of a multi-gene network including microRNA (miRNA). Until now, there is no report on the role of miR-125b in regulating mastitis in dairy cows. This study found that miR-125b expression is significantly decreased in lipopolysaccharide (LPS)-induced MAC-T bovine mammary epithelial cells. Also, its expression is negatively correlated with the expression of NF-κB inhibitor interacting Ras-like 2 (NKIRAS2) gene. MiR-125b target genes were identified using a double luciferase reporter gene assay, which showed that miR-125b can bind to the 3' untranslated region (3' UTR) of the NKIRAS2, but not the 3'UTR of the TNF-α induced protein 3 (TNFAIP3). In addition, miR-125b overexpression and silencing were used to investigate the role of miR-125b on inflammation in LPS-induced MAC-T. The results demonstrate that a reduction in miR-125b expression in LPS-induced MAC-T cells increases NKIRAS2 expression, which then reduces NF-κB activity, leading to low expression of the inflammatory factors IL-6 and TNF-α. Ultimately, this reduces the inflammatory response in MAC-T cells. These results indicate that miR-125b is a pro-inflammatory regulator and that its silencing can alleviate bovine mastitis. These findings lay a foundation for elucidating the molecular regulation mechanism of cow mastitis.
Project description:The highly expressed circHIPK3 is a circular RNA that has been previously reported to regulate the growth of human cells. In this study, we found an increased expression of circHIPK3 in bovine mammary epithelial cells treated with prolactin (PRL) in high-throughput sequencing data. Thus, we further investigated the effect of circHIPK3 on the proliferation and differentiation of mammary epithelial cells. We used qRT-PCR/Cell Counting Kit-8 (CCK-8) and a Western blotting analysis to evaluate the effects on cell proliferation. We found that circHIPK3 promotes the proliferation of mammary epithelial cells. The STAT5 signaling pathway was previously associated with the prolactin response and when the STAT5 was suppressed, the expression of circHIPK3 decreased. The results suggest that the response to prolactin and the associated STAT5 signaling pathway affect the expression of circHIPK3, which subsequently affects the proliferation of mammary epithelial cells in dairy cows.
Project description:Aberrant expression of miR-196a has been frequently reported in different cancers including pancreatic cancer. However, its function in pancreatic cancer has not been fully elucidated. Here, we investigated the expression pattern and the biological role of miR-196a in pancreatic cancer cell lines, as well as its interaction with a metastasis-related gene, nuclear factor-kappa-B-inhibitor alpha (NFKBIA). We demonstrated that miR-196a was up-regulated in human pancreatic cancer cell lines compared with immortalized pancreatic ductal epithelial cells by means of microRNAs microarray and qRT-PCR. Furthermore, down-regulation of miR-196a in PANC-1 suppressed its proliferation and migration with an increase in G0/G1 transition and decreased expression of Cyclin D1 and CDK4/6. Meanwhile, an increased expression in E-cadherin and decreased expression in N-cadherin and Vimentin were also observed. We identified a novel miR-196a target, NFKBIA, and down-regulation of miR-196a enhanced the expression of NFKBIA protein. Luciferase assay confirmed that NFKBIA was a direct and specific target of miR-196a. Silencing NFKBIA in PANC-1 cells enhanced its proliferation and migration. Taken together, our findings indicate that miR-196a is highly expressed in pancreatic cancer cell lines, and may play a crucial role in pancreatic cancer proliferation and migration, possibly through its downstream target, NFKBIA. Thus, miR-196a may serve as a potential therapeutic target for pancreatic cancer.
Project description:Numerous researches show that MicroRNAs (miRNAs) participate in tumorigenesis, progression, recurrence and drug resistance of malignant tumors, including laryngocarcinoma. miR-552 works as an oncogene in both colorectal cancer and liver cancer. However, the potential role of miR-552 in laryngocarcinoma is unknown. Herein, we for first found that miR-552 expression was upregulated in laryngocarcinoma tissues compared with their normal controls. Moreover, miR-552 expression was also increasing in the laryngocarcinoma cells. miR-552 interference inhibited the proliferation and metastasis of laryngocarcinoma cells in vitro and in vivo. Mechanically, bioinformatics and luciferase reporter analysis identified p53 as a direct target of miR-552. miR-552 knockdown upregulated the p53 mRNA and protein expression in laryngocarcinoma cells. miR-552 expression was negatively associated with p53 expression in laryngocarcinoma tissues. More importantly, the p53 siRNA or p53 overexpression virus abrogated the discrepancy of growth and metastasis capacity between miR-552 interference laryngocarcinoma cells and control cells.