Project description:The purpose of this study was to compare animal health in compost-bedded pack (CBP) and cubicle housing (CH) systems using data from dairy herd improvement associations. Thirty-two commercial dairy farms located in Austria, Germany, Italy, The Netherlands, Slovenia, and Sweden were included in the study. A matching design (pairing CBP and CH within country) according to herd selection criteria was used. We explored the following health indicators: somatic cell counts (SCC), high SCC, new high SCC, ketosis risk, prolonged calving intervals, dystocia, and stillbirth. Traits for culling and culling-related issues, such as length of life and length of productive life, were also included. We used multivariable (mixed) linear and logistic regression models to evaluate differences between the systems. Udder health, as measured by SCC, was inferior in CBP, although the geometric means were low in both systems. The incidence of stillbirths was higher in CBP, while prolonged calving intervals were fewer, indicating that there were fewer reproductive disorders. There were no differences in longevity between the systems, although CBP had lower proportions of first calvers. Overall, we conclude that there were few and minor differences in health and longevity between the CBP and CH systems in the European context.
Project description:Three loose housing systems for lactating cows (compost bedded pack, CBP; conventional bedded pack, BP; and freestalls, FS) were assessed on one farm in terms of cow behavior and welfare. An on-farm welfare assessment based on the Welfare Quality protocols was used four times every three months on 757 cows. Video recordings taken twice over four days were used to assess behavior patterns at resting areas. Cows in CBP and BP were dirtier than those in FS (p < 0.0001). Fewer integument alterations were recorded for CBP and BP than FS (p < 0.001). Cows in BP were quicker to lie down and stand up compared to those in CBP or FS (p < 0.001). Percentages of cows needing more attempts before rising were higher for FS (p < 0.01). However, a higher frequency of kneeling was observed in CBP (p = 0.033). A lower percentage of cows lying in the resting area was recorded for FS (56%) than CBP or BP (97 or 84%, respectively, p < 0.05). Overall, in this study, cows kept in bedded pack barns were dirtier but had fewer integument alterations and spent more time lying down in the resting area than cows housed in freestalls.
Project description:This study aimed to estimate the fermentation characteristics of bedded pack barn dairy cattle manure (BDCM) in terms of methane yield, fibrous material, and nitrogen content in batch solid-state anaerobic digestion (SSAD). SSAD was performed in triplicate using a 1,400 ml polypropylene bottle at a constant temperature of 39 °C until less than 1% methane was produced. The cumulative methane content of BDCM was 142.5 N mL/g volatile solids (VSs). The methane content rapidly increased for 18 days, reaching 63.4 ± 4.6% until the end of the experiment. The ultimate biodegradability and total VS removal of BDCM were 23.1 and 19.0%, respectively. The slopes of the non-fibrous and hemicellulose carbon fractions, and acid detergent insoluble carbon by digestion time were -0.174 (p < 0.001), -0.141 (p = 0.003), and -0.051 (p < 0.001), respectively. The non-fibrous and hemicellulose nitrogen fraction contents quadratically decreased during SSAD (p = 0.001 and p = 0.008). No significant decrease was observed in the acid detergent insoluble nitrogen content (p = 0.840). The results of the present study provide basic data on the digestion characteristics of BDCM and could help determine fermentation conditions in the anaerobic digestion of BDCM.
Project description:The aim of the present study was to detect significant SNP (single-nucleotide polymorphism) effects and to annotate potential candidate genes for novel udder health traits in two different farming systems. We focused on specific mastitis pathogens and differential somatic cell fractions from 2198 udder quarters of 537 genotyped Holstein Friesian cows. The farming systems comprised compost-bedded pack and conventional cubicle barns. We developed a computer algorithm for genome-wide association studies allowing the estimation of main SNP effects plus consideration of SNPs by farming system interactions. With regard to the main effect, 35 significant SNPs were detected on 14 different chromosomes for the cell fractions and the pathogens. Six SNPs were significant for the interaction effect with the farming system for most of the udder health traits. We inferred two possible candidate genes based on significant SNP interactions. HEMK1 plays a role in the development of the immune system, depending on environmental stressors. CHL1 is regulated in relation to stress level and influences immune system mechanisms. The significant interactions indicate that gene activity can fluctuate depending on environmental stressors. Phenotypically, the prevalence of mastitis indicators differed between systems, with a notably lower prevalence of minor bacterial indicators in compost systems.
Project description:BackgroundCompost-bedded pack barns (CBP) are getting huge attention as an alternative housing system for dairy cows due to their beneficial impact on animal welfare. Effective microorganisms (EM) inoculums are believed to enhance compost quality, improve soil structure and benefit the environment. However, little information is available on the impact of incubation with external EM combinations on the barn environment, compost quality and microbial diversity in CBP. This experiment was carried out to investigate the effect of inoculating different combinations of EM [Lactobacillus plantarum (L), Compound Bacillus (B) and Saccharomyces cerevisiae (S)] on compost quality and microbial communities of CBP products, as well as the relationship with the heifers' barn environment. CBP barns were subjected to the following four treatments: CON with no EM inoculum, LB/LS/LBS were Incubated with weight ratios of 1:2 (L: B), 1:2 (L: S), 1:1:1 (L: B: S), respectively.ResultsThe EM inoculation (LB, LS, LBS) reduced the concentration of respirable particulate matter (PM10 and PM2.5) in the CBP, and decreased the serum total protein and total cholesterol levels in heifers. Notably, LBS achieved the highest content of high-density lipoprotein compared to other treatments. Microbiome results revealed that EM inoculation reduced the bacterial abundance (Chao1 index) and fungal diversity (Shannon & Simpson indexes), while increasing the relative abundance of various bacterial genera (Pseudomonas, Paracoccus, Aequorivita) and fungi (Pestalotiopsis), which are associated with cellulose decomposition that ultimately resulted in accelerating organic matter degradation and humification. Furthermore, high nutrient elements (TK&TP) and low mycotoxin content were obtained with EM inoculation, with LBS showing a particularly pronounced effect. Meanwhile, LBS contributed to a decline in the proportion of fungal pathogen categories but also led to an increase in fungal saprotroph categories.ConclusionGenerally, EM inoculation positively impacted compost product quality as organic fertilizer and barn environment by modifying the abundance of cellulolytic bacteria and fungi, while inhibiting the reproduction of pathogenic microbes, especially co-supplementing with L, B and S achieved an amplifying effect.
Project description:BackgroundSeveral management and environmental factors are known as contributory causes of clinical mastitis in dairy herd. The study objectives were to describe the structure of herd-specific mastitis management and environmental factors and to assess the relevance of these herd-specific indicators to mastitis incidence rate.MethodsDisease reports from the Danish Cattle Data Base and a management questionnaire from 2,146 herds in three Danish regions were analyzed to identify and characterize risk factors of clinical mastitis. A total of 94 (18 continuous and 76 discrete) management and production variables were screened in separate bivariate regression models. Variables associated with mastitis incidence rate at a p-value < 0.10 were examined with a factor analysis to assess the construct of data. Separately, a multivariable regression model was used to estimate the association of management variables with herd mastitis rate.ResultsThree latent factors (quality of labor, region of Denmark and claw trimming, and quality of outdoor holding area) were identified from 14 variables. Daily milk production per cow, claw disease, quality of labor and region of Denmark were found to be significantly associated with mastitis incidence rate. A common multiple regression analysis with backward and forward selection procedures indicated there were 9 herd-specific risk factors.ConclusionThough risk factors ascertained by farmer-completed surveys explained a small percentage of the among-herd variability in crude herd-specific mastitis rates, the study suggested that farmer attitudes toward mastitis and lameness treatment were important determinants for mastitis incidence rate. Our factor analysis identified one significant latent factor, which was related to labor quality on the farm.
Project description:Bovine mastitis is one of the main inflammatory diseases that can affect the udder during lactation. Somatic cell counts and sometimes microbiological tests are routinely adopted during monitoring diagnostics in dairy herds. However, subclinical mastitis is challenging to identify, reducing the possibility of early treatments. The main aim of this study was to investigate the miRNome profile of extracellular vesicles isolated from milk as potential biomarkers of subclinical mastitis. Milk samples were collected from a total of 60 dairy cows during routine monitoring tests. Small RNA sequencing technology was applied to extracellular vesicles of milk samples collected from cows classified according to the somatic cell count to identify differences in the miRNome between mastitic and healthy cows. A total of 1997 miRNAs were differentially expressed between both groups. Among them, 68 miRNAs whose FDRs were < 0.05 were mostly downregulated, with only one upregulated miRNA (i.e., miR-361). Functional analysis revealed that miR-455-3p, miR-503-3p, miR-1301-3p and miR-361-5p are involved in the regulation of several biological processes related to mastitis, including immune system-related processes. This study suggests the involvement of extracellular vesicle-derived miRNAs in the regulation of mastitis. Moreover, these findings provide evidence that miRNAs from milk extracellular vesicles can be used to identify biomarkers of mastitis. However, further studies must be conducted to validate these miRNAs, especially for subclinical diagnosis.
Project description:Compost-bedded pack barns (CBP) are of increasing interest in dairy farming due to their positive effect on animal welfare. The temperature and the moisture content of the bedding material characterising the composting process can promote the growth of thermophilic aerobic sporeformers (TAS). Therefore, the aim of this study was to determine CBP bedding material characteristics, such as moisture content and temperature, and to determine TAS species. The dilution, the heat inactivation of all non-TAS species and the incubation of 13 bedding samples from four CBP groups resulted in a mean TAS amount over all samples of 4.11 log10 cfu/g bedding material. Based on the subsequent sequencing of parts of the 16S rRNA-gene of 99 TAS colonies, the TAS species Aneurinibacillus thermoaerophilus, Bacillus licheniformis, Geobacillus thermodenitrificans, Laceyella sacchari, Thermoactinomyces vulgaris and Ureibacillus thermosphaericus were identified. The moisture content of the bedding material, the relative humidity above the bedding material and the sampling season significantly affected the amount of TAS. The moisture content or relative humidity above the bedding material significantly influenced the concentration of Ureibacillus thermophaericus or Laceyella sacchari. Consequently, an optimal CBP management including a dry lying surface and an optimal composting process will contribute to a moderate microbial, especially TAS amount, and TAS species distribution.