Ontology highlight
ABSTRACT:
SUBMITTER: Hoffmann M
PROVIDER: S-EPMC10705612 | biostudies-literature | 2023 Nov
REPOSITORIES: biostudies-literature
Hoffmann Markus M Poschenrieder Julian M JM Incudini Massimiliano M Baier Sylvie S Fitz Amelie A Maier Andreas A Hartung Michael M Hoffmann Christian C Trummer Nico N Adamowicz Klaudia K Picciani Mario M Scheibling Evelyn E Harl Maximilian V MV Lesch Ingmar I Frey Hunor H Kayser Simon S Wissenberg Paul P Schwartz Leon L Hafner Leon L Acharya Aakriti A Hackl Lena L Grabert Gordon G Lee Sung-Gwon SG Cho Gyuhyeok G Cloward Matthew M Jankowski Jakub J Lee Hye Kyung HK Tsoy Olga O Wenke Nina N Pedersen Anders Gorm AG Bønnelykke Klaus K Mandarino Antonio A Melograna Federico F Schulz Laura L Climente-González Héctor H Wilhelm Mathias M Iapichino Luigi L Wienbrandt Lars L Ellinghaus David D Van Steen Kristel K Grossi Michele M Furth Priscilla A PA Hennighausen Lothar L Di Pierro Alessandra A Baumbach Jan J Kacprowski Tim T List Markus M Blumenthal David B DB
medRxiv : the preprint server for health sciences 20231109
Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)<sup>1-3</sup>. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (<b>ne</b>twork-based <b>e</b>pistasis <b>d</b>etection via <b>l</b>ocal search), we leverage netw ...[more]