Project description:To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.
Project description:We present an improved version of DART-seq which utilizes a variant of the YTH domain engineered to achieve enhanced m6A recognition in APO1-YTH (D422N). In addition, we develop in vitro DART-seq and show that it performs similarly to cellular DART-seq and can map m6A in any sample of interest using nanogram amounts of total RNA.
Project description:The number of genetically modified (GM) events for canola, maize, and soybean has been steadily increasing. Real-time PCR is widely used for the detection and quantification of individual GM events. Digital PCR (dPCR) has also been used for absolute quantification of GM events. A duplex dPCR assay consisting of one reference gene and one GM event has been carried out in most cases. The detection of more than one GM event in a single assay will increase the efficiency of dPCR. The feasibility of detection and quantification of two, three, and four GM canola and soybean events at the same time was investigated at 0.1%, 1%, and 5% levels using the QX200 Droplet Digital PCR (ddPCR) system. The reference gene assay was carried out on the same plate but in different wells. For some of the assays, optimization of the probe concentrations and labels was needed for successful ddPCR. Results close to the expected result were achieved for duplex, triplex, and tetraplex ddPCR assays for GM canola events. Similar ddPCR results were also achieved for some GM soybean events with some exceptions. Overall, absolute quantification of up to four GM events at the same time improves the efficiency of GM detection.
Project description:Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems.
Project description:This Guidance describes how to perform hazard identification for endocrine-disrupting properties by following the scientific criteria which are outlined in Commission Delegated Regulation (EU) 2017/2100 and Commission Regulation (EU) 2018/605 for biocidal products and plant protection products, respectively.
Project description:In cancer research, the accuracy of the technology used for biomarkers detection is remarkably important. In this context, digital PCR represents a highly sensitive and reproducible method that could serve as an appropriate tool for tumor mutational status analysis. In particular, droplet-based digital PCR approaches have been developed for detection of tumor-specific mutated alleles within plasmatic circulating DNA. Such an approach calls for the development and validation of a very significant quantity of assays, which can be extremely costly and time consuming. Herein, we evaluated assays for the detection and quantification of various mutations occurring in three genes often misregulated in cancers: the epidermal growth factor receptor (EGFR), the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and the Tumoral Protein p53 (TP53) genes. In particular, commercial competitive allele-specific TaqMan® PCR (castPCR™) technology, as well as TaqMan® and ZEN™ assays, have been evaluated for EGFR p.L858R, p.T790M, p.L861Q point mutations and in-frame deletions Del19. Specificity and sensitivity have been determined on cell lines DNA, plasmatic circulating DNA of lung cancer patients or Horizon Diagnostics Reference Standards. To show the multiplexing capabilities of this technology, several multiplex panels for EGFR (several three- and four-plexes) have been developed, offering new "ready-to-use" tests for lung cancer patients.
Project description:BackgroundWith the increasing pace of new Genetically Modified Organisms (GMOs) authorized or in pipeline for commercialization worldwide, the task of the laboratories in charge to test the compliance of food, feed or seed samples with their relevant regulations became difficult and costly. Many of them have already adopted the so called "matrix approach" to rationalize the resources and efforts used to increase their efficiency within a limited budget. Most of the time, the "matrix approach" is implemented using limited information and some proprietary (if any) computational tool to efficiently use the available data.ResultsThe developed GMOseek software is designed to support decision making in all the phases of routine GMO laboratory testing, including the interpretation of wet-lab results. The tool makes use of a tabulated matrix of GM events and their genetic elements, of the laboratory analysis history and the available information about the sample at hand. The tool uses an optimization approach to suggest the most suited screening assays for the given sample. The practical GMOseek user interface allows the user to customize the search for a cost-efficient combination of screening assays to be employed on a given sample. It further guides the user to select appropriate analyses to determine the presence of individual GM events in the analyzed sample, and it helps taking a final decision regarding the GMO composition in the sample. GMOseek can also be used to evaluate new, previously unused GMO screening targets and to estimate the profitability of developing new GMO screening methods.ConclusionThe presented freely available software tool offers the GMO testing laboratories the possibility to select combinations of assays (e.g. quantitative real-time PCR tests) needed for their task, by allowing the expert to express his/her preferences in terms of multiplexing and cost. The utility of GMOseek is exemplified by analyzing selected food, feed and seed samples from a national reference laboratory for GMO testing and by comparing its performance to existing tools which use the matrix approach. GMOseek proves superior when tested on real samples in terms of GMO coverage and cost efficiency of its screening strategies, including its capacity of simple interpretation of the testing results.
Project description:ObjectivesIn Ecuador, food products need to be labeled if exceeded 0.9% of transgenic content in whole products. For the detection of genetically modified organisms (GMOs), three DNA extraction methods were tested in 35 food products commercialized in Ecuador. Samples with positive amplification of endogenous genes were screened for the presence of the Cauliflower mosaic virus 35S-promoter (P35S) and the nopaline synthase-terminator (Tnos). TaqMan™ probes were used for determination of transgenic content of the GTS 40-3-2 and MON810 events through quantitative PCR (qPCR).ResultsTwenty-six processed food samples were positive for the P35S alone and eight samples for the Tnos and P35S. Absolute qPCR results indicated that eleven samples were positive for GTS 40-3-2 specific event and two for MON810 specific event. A total of nine samples for events GTS 40-3-2 and MON810 exceeded the umbral allowed of transgenic content in the whole food product with the specific events. Different food products may require different DNA extraction protocols for GMO detection through PCR. Among the three methods tested, the DNeasy mericon food kit DNA extraction method obtained higher proportion of amplified endogenous genes through PCR. Finally, event-specific GMOs were detected in food products in Ecuador.
Project description:The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.