Project description:MicroRNAs (miRs) control the expression of diverse subsets of target mRNAs, and studies have found miR dysregulation in failing hearts. Expression of miR-29 is abundant in heart, increased with aging, and altered in cardiomyopathies. Prior studies demonstrate that miR-29 reduction via genetic knockout or pharmacologic blockade can blunt cardiac hypertrophy and fibrosis in mice. Surprisingly, this depended on specifically blunting miR-29 actions in cardiomyocytes versus fibroblasts. To begin developing more translationally-relevant vectors, we generated a novel transgene-encoded miR-29 inhibitor (TuD-29) that can be incorporated into a viral-mediated gene therapy for cardioprotection. Herein, we corroborate that miR-29 expression and activity is higher in cardiomyocytes versus fibroblasts and demonstrate that TuD-29 effectively blunts hypertrophic responses in cultured cardiomyocytes and mouse hearts. Furthermore, we found that adeno-associated viral (AAV)-mediated miR-29 overexpression in mouse hearts induces early diastolic dysfunction, whereas AAV:TuD-29 treatment improves cardiac output by increasing end-diastolic and stroke volumes. Integration of RNA-seq and miR-target interactomes reveals that miR-29 regulates genes involved in calcium handling, cell stress and hypertrophy, metabolism, ion transport, and extracellular matrix remodeling. These investigations support a likely versatile role for miR-29 in influencing myocardial compliance and relaxation, potentially providing a unique therapeutic avenue to improve diastolic function in heart failure patients.
Project description:Modulation of miR-29 influences myocardial compliance likely through coordinated regulation of calcium handling and extracellular matrix
Project description:Myocardial infarction is remains the leading cause of death in developed countries. Recent data show that the composition of the extracellular matrix might differ despite similar heart function and infarction sizes. Because collagen is the main component of the extracellular matrix, we hypothesized that changes in inflammatory cell recruitment influence the synthesis of different collagen subtypes in myofibroblasts, thus changing the composition of the scar. We found that neutrophils sustain the proliferation of fibroblasts, remodeling, differentiation, migration and inflammation, predominantly by IL-1 and PPARγ pathways (n = 3). They also significantly inhibit the mRNA expression of fibrillar collagen, maintaining a reduced stiffness in isolated myofibroblasts (n = 4-5). Reducing the neutrophil infiltration in CCR1-/- resulted in increased mRNA expression of collagen 11, moderate expression of collagen 19 and low expression of collagen 13 and 26 in the scar 4 weeks post infarction compared with other groups (n = 3). Mononuclear cells increased the synthesis of all collagen subtypes and upregulated the NF-kB, angiotensin II and PPARδ pathways (n = 3). They increased the synthesis of collagen subtypes 1, 3, 5, 16 and 23 but reduced the expression of collagens 5 and 16 (n = 3). CCR2-/- scar tissue showed higher levels of collagen 13 (n = 3), in association with a significant reduction in stiffness (n = 4-5). Upregulation of the inflammation-related genes in myofibroblasts mostly modulated the fibrillar collagen subtypes, with less effect on the FACIT, network-forming and globular subtypes (n = 3). The upregulation of proliferation and differentiation genes in myofibroblasts seemed to be associated only with the fibrillar collagen subtype, whereas angiogenesis-related genes are associated with fibrillar, network-forming and multiplexin subtypes. In conclusion, although we intend for our findings to deepen the understanding of the mechanism of healing after myocardial infarction and scar formation, the process of collagen synthesis is highly complex, and further intensive investigation is needed to put together all the missing puzzle pieces in this still incipient knowledge process.
Project description:IntroductionAlthough stem cell therapy is a promising treatment for myocardial infarction, the minimal functional improvements observed clinically limit its widespread application. A need exists to maximize the therapeutic potential of these stem cells by first understanding what factors within the infarct microenvironment affect their ability to regenerate the necrotic tissue. In this study, we assessed both differentiation capacity and paracrine signaling as a function of extracellular matrix remodeling after myocardial infarction.MethodsMechanical and compositional changes to the decellularized infarcted myocardium were characterized to understand how the extracellular environment, specifically, was altered as a function of time after coronary artery ligation in Sprague-Dawley rats. These alterations were first modeled in a polyacrylamide gel system to understand how the variables of composition and stiffness drive mesenchymal stem cell differentiation towards a cardiac lineage. Finally, the paracrine secretome was characterized as a function of matrix remodeling through gene and protein expression and conditioned media studies.ResultsThe decellularized infarct tissue revealed significant alterations in both the mechanical and compositional properties of the ECM with remodeling following infarction. This altered microenvironment dynamically regulates the potential for early cardiac differentiation. Whereas Nkx2.5 expression is limited in the presence of chronic remodeled matrix of increased stiffness, GATA4 expression is enhanced. In addition, the remodeled matrix promotes the expression of several proangiogenic, prosurvival, antifibrotic, and immunomodulatory growth factors. In particular, an increase in HGF and SDF1 expression and secretion by mesenchymal stem cells can rescue oxidatively stressed cardiomyocytes in vitro.ConclusionsThis study demonstrated that decellularization of diseased tissue allows for the exclusive analysis of the remodeled matrix and its ability to influence significantly the cellular phenotype. Characterization of cell fate as a function of myocardial remodeling following infarction is critical in developing the ideal strategy for cell implantation to maximize tissue regeneration and to ultimately reduce the prevalence and severity of heart failure.
Project description:RATIONALE:Normal cardiac physiology requires highly regulated cytosolic Ca(2+) concentrations and abnormalities in Ca(2+) handling are associated with heart failure. The majority of approaches to identifying the components that regulate intracellular Ca(2+) dynamics rely on cells in culture, mouse models, and human samples. However, a genetically robust system for unbiased screens of mutations that affect Ca(2+) handling remains a challenge. OBJECTIVE:We sought to develop a new method to measure myocardial Ca(2+) cycling in adult Drosophila and determine whether cardiomyopathic fly hearts recapitulate aspects of diseased mammalian myocardium. METHODS AND RESULTS:Using engineered transgenic Drosophila that have cardiac-specific expression of Ca(2+)-sensing fluorescent protein, GCaMP2, we developed methods to measure parameters associated with myocardial Ca(2+) handling. The following key observations were identified: (1) Control w(1118) Drosophila hearts have readily measureable Ca(2+)-dependent fluorescent signals that are dependent on L-type Ca(2+) channels and SR Ca(2+) stores and originate from rostral and caudal pacemakers. (2) A fly mutant, held-up(2) (hdp(2)), that has a point mutation in troponin I and has a dilated cardiomyopathic phenotype demonstrates abnormalities in myocardial Ca(2+) handling that include increases in the duration of the 50% rise in intensity to peak intensity, the half-time of fluorescence decline from peak, the full duration at half-maximal intensity, and decreases in the linear slope of decay from 80% to 20% intensity decay. (3) Hearts from hdp(2) mutants had reductions in caffeine-induced Ca(2+) increases and reductions in ryanodine receptor (RyR) without changes in L-type Ca(2+) channel transcripts in comparison with w(1118). CONCLUSIONS:Our results show that the cardiac-specific expression of GCaMP2 provides a means of characterizing propagating Ca(2+) transients in adult fly hearts. Moreover, the adult fruit fly heart recapitulates several aspects of Ca(2+) regulation observed in mammalian myocardium. A mutation in Drosophila that causes an enlarged cardiac chamber and impaired contractile function is associated with abnormalities in the cytosolic Ca(2+) transient as well as changes in transcript levels of proteins associated with Ca(2+) handling. This new methodology has the potential to permit an examination of evolutionarily conserved myocardial Ca(2+)-handing mechanisms by applying the vast resources available in the fly genomics community to conduct genetic screens to identify new genes involved in generated Ca(2+) transients and arrhythmias.
Project description:Type 2 diabetes (T2D) is a multisystem disease with rapidly increasing global prevalence. Heart failure has emerged as a major complication of T2D. Dysregulated myocardial calcium handling is evident in the failing heart and this may be a key driver of cardiomyopathy in T2D, but until recently this has only been demonstrated in animal models. In this review, we describe the physiological concepts behind calcium handling within the cardiomyocyte and the application of novel imaging techniques for the quantification of myocardial calcium uptake. We take an in-depth look at the evidence for the impairment of calcium handling in T2D using pre-clinical models as well as in vivo studies, following which we discuss potential novel therapeutic approaches targeting dysregulated myocardial calcium handling in T2D.
Project description:Myocardial infarction (MI) is one of the leading causes of death worldwide. However, there is no effective treatment for MI. In this study, trimetazidine (TMZ) and Danhong injection (DHI), representing western medicine and traditional Chinese medicine for MI, were used as tools to identify vital processes in alleviating MI injury. Administration of DHI and TMZ obviously decreased myocardial infarct size, improved ultrasonic heart function, and reduced creatine kinase (CK), lactate dehydrogenase (LDH), and glutamic oxaloacetic transaminase (AST) levels after MI. RNA-seq results indicated calcium ion handling and negative regulation of apoptotic process were vital processes and DHI and TMZ obviously reduced the expression of CaMK II and inhibited cleaved caspase-3 and Bax. Furthermore, DHI and TMZ increased p-S16-PLB, p-S16T17-PLB, CACNA1C, p-RyR2, and p-PKA expression but did not affect SERCA2a expression. In addition to the enhancement of cardiac myocyte shortening amplitude, maximum shortening velocity, and calcium transients, DHI and TMZ increased sarcoplasmic reticulum calcium content and enhanced SERCA2a calcium uptake capability by upregulating the phosphorylation of PLB but did not affect calcium exclusion by NCX. In conclusion, DHI and TMZ protect against MI through inhibiting apoptosis by downregulating CaMKII pathway and enhancing cardiac myocyte contractile functions possibly through the PKA signaling pathway.
Project description:Exercise provides protection against myocardial ischemia-reperfusion (IR) injury. Understanding the mechanisms of this protection may lead to new interventions for the prevention and/or treatment of heart disease. Although presently these mechanisms are not well understood, reports suggest that manganese superoxide dismutase (MnSOD) and calpain may be critical mediators of this protection. We hypothesized that an exercise-induced increase in MnSOD would provide cardioprotection by attenuating IR-induced oxidative modification to critical Ca(2+)-handling proteins, thereby decreasing calpain-mediated cleavage of these and other proteins attenuating cardiomyocyte death. After IR, myocardial apoptosis and infarct size were significantly reduced in hearts of exercised animals compared with sedentary controls. In addition, exercise prevented IR-induced calpain activation as well as the oxidative modification and calpain-mediated degradation of myocardial Ca(2+)-handling proteins (L-type Ca(2+) channels, phospholamban, and sarcoplasmic/endoplasmic reticulum calcium ATPase). Further, IR-induced activation of proapoptotic proteins was attenuated in exercised animals. Importantly, prevention of the exercise-induced increase in MnSOD activity via antisense oligonucleotides greatly attenuated the cardioprotection conferred by exercise. These results suggest that MnSOD provides cardioprotection by attenuating IR-induced oxidation and calpain-mediated degradation of myocardial Ca(2+)-handling proteins, thereby preventing myocardial apoptosis and necrosis.
Project description:Synthetic scaffolds for the repair of long-segment tracheal defects are hindered by insufficient biocompatibility and poor graft epithelialization. In this study, we determined if extracellular matrix (ECM) coatings improved the biocompatibility and epithelialization of synthetic tracheal grafts (syn-TG). Porcine and human ECM substrates (pECM and hECM) were created through the decellularization and lyophilization of lung tissue. Four concentrations of pECM and hECM coatings on syn-TG were characterized for their effects on scaffold morphologies and on in vitro cell viability and growth. Uncoated and ECM-coated syn-TG were subsequently evaluated in vivo through the orthotopic implantation of segmental grafts or patches. These studies demonstrated that ECM coatings were not cytotoxic and, enhanced the in vitro cell viability and growth on syn-TG in a dose-dependent manner. Mass spectrometry demonstrated that fibrillin, collagen, laminin, and nephronectin were the predominant ECM components transferred onto scaffolds. The in vivo results exhibited similar robust epithelialization of uncoated and coated syn-TG patches; however, the epithelialization remained poor with either uncoated or coated scaffolds in the segmental replacement models. Overall, these findings demonstrated that ECM coatings improve the seeded cell biocompatibility of synthetic scaffolds in vitro; however, they do not improve graft epithelialization in vivo.
Project description:The glomerular basement membrane (GBM) is a specialized extracellular matrix (ECM) compartment within the glomerulus that contains tissue-restricted isoforms of collagen IV and laminin. It is integral to the capillary wall and therefore, functionally linked to glomerular filtration. Although the composition of the GBM has been investigated with global and candidate-based approaches, the relative contributions of glomerular cell types to the production of ECM are not well understood. To characterize specific cellular contributions to the GBM, we used mass spectrometry-based proteomics to analyze ECM isolated from podocytes and glomerular endothelial cells in vitro. These analyses identified cell type-specific differences in ECM composition, indicating distinct contributions to glomerular ECM assembly. Coculture of podocytes and endothelial cells resulted in an altered composition and organization of ECM compared with monoculture ECMs, and electron microscopy revealed basement membrane-like ECM deposition between cocultured cells, suggesting the involvement of cell-cell cross-talk in the production of glomerular ECM. Notably, compared with monoculture ECM proteomes, the coculture ECM proteome better resembled a tissue-derived glomerular ECM dataset, indicating its relevance to GBM in vivo. Protein network analyses revealed a common core of 35 highly connected structural ECM proteins that may be important for glomerular ECM assembly. Overall, these findings show the complexity of the glomerular ECM and suggest that both ECM composition and organization are context-dependent.