Project description:Mechanisms of neutrophil involvement in severe COVID-19 remain incompletely understood. Here we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls, and perform bulk RNA-sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between 6 distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated SARS-CoV-2-specific IgG1-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.
Project description:PurposeReactive oxygen species (ROS) are an important part of the inflammatory response during infection but can also promote DNA damage. Due to the sustained inflammation in severe Covid-19, we hypothesized that hospitalized Covid-19 patients would be characterized by increased levels of oxidative DNA damage and dysregulation of the DNA repair machinery.Patients and methodsLevels of the oxidative DNA lesion 8-oxoG and levels of base excision repair (BER) proteins were measured in peripheral blood mononuclear cells (PBMC) from patients (8-oxoG, n = 22; BER, n = 17) and healthy controls (n = 10) (Cohort 1). Gene expression related to DNA repair was investigated in two independent cohorts of hospitalized Covid-19 patients (Cohort 1; 15 patents and 5 controls, Cohort 2; 15 patients and 6 controls), and by publicly available datasets.ResultsPatients and healthy controls showed comparable amounts of oxidative DNA damage as assessed by 8-oxoG while levels of several BER proteins were increased in Covid-19 patients, indicating enhanced DNA repair in acute Covid-19 disease. Furthermore, gene expression analysis demonstrated regulation of genes involved in BER and double strand break repair (DSBR) in PBMC of Covid-19 patients and expression level of several DSBR genes correlated with the degree of respiratory failure. Finally, by re-analyzing publicly available data, we found that the pathway Hallmark DNA repair was significantly more regulated in circulating immune cells during Covid-19 compared to influenza virus infection, bacterial pneumonia or acute respiratory infection due to seasonal coronavirus.ConclusionAlthough beneficial by protecting against DNA damage, long-term activation of the DNA repair machinery could also contribute to persistent inflammation, potentially through mechanisms such as the induction of cellular senescence. However, further studies that also include measurements of additional markers of DNA damage are required to determine the role and precise molecular mechanisms for DNA repair in SARS-CoV-2 infection.
Project description:Coronavirus disease 2019 (COVID-19) can be asymptomatic or lead to a wide spectrum of symptoms, ranging from mild upper respiratory system involvement to acute respiratory distress syndrome, multi-organ damage and death. In this study, we explored the potential of microRNAs (miRNA) in delineating patient condition and in predicting clinical outcome. Analysis of the circulating miRNA profile of COVID-19 patients, sampled at different hospitalization intervals after admission, allowed to identify miR-144-3p as a dynamically regulated miRNA in response to COVID-19.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.
Project description:BackgroundObesity is a risk factor for adverse outcomes in COVID-19, potentially driven by chronic inflammatory state due to dysregulated secretion of adipokines and cytokines. We investigated the association between plasma adipokines and COVID-19 severity, systemic inflammation, clinical parameters, and outcome of COVID-19 patients.MethodsIn this multi-centre prospective cross-sectional study, we collected blood samples and clinical data from COVID-19 patients. The severity of COVID-19 was classified as mild (no hospital admission), severe (ward admission), and critical (ICU admission). ICU non-COVID-19 patients were also included and plasma from healthy age, sex, and BMI-matched individuals obtained from Lifelines. Multi-analyte profiling of plasma adipokines (Leptin, Adiponectin, Resistin, Visfatin) and inflammatory markers (IL-6, TNFα, IL-10) were determined using Luminex multiplex assays.ResultsBetween March and December 2020, 260 SARS-CoV-2 infected individuals (age: 65 [56-74] BMI 27.0 [24.4-30.6]) were included: 30 mild, 159 severe, and 71 critical patients. Circulating leptin levels were reduced in critically ill patients with a high BMI yet this decrease was absent in patients that were administered dexamethasone. Visfatin levels were higher in critical COVID-19 patients compared to non-COVID-ICU, mild and severe patients (4.7 vs 3.4, 3.0, and 3.72 ng/mL respectively, p < 0.05). Lower Adiponectin levels, but higher Resistin levels were found in severe and critical patients, compared to those that did not require hospitalization (3.65, 2.7 vs 7.9 µg/mL, p < 0.001, and 18.2, 22.0 vs 11.0 ng/mL p < 0.001).ConclusionCirculating adipokine levels are associated with COVID-19 hospitalization, i.e., the need for oxygen support (general ward), or the need for mechanical ventilation and other organ support in the ICU, but not mortality.
Project description:The lack of available biomarkers for diagnosing and predicting different stages of coronavirus disease 2019 (COVID-19) is currently one of the main challenges that clinicians are facing. Recent evidence indicates that the plasma levels of specific miRNAs may be significantly modified in COVID-19 patients. Large-scale deep sequencing analysis of small RNA expression was performed on plasma samples from 40 patients hospitalized for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (between March and May 2020) (median 13.50 [IQR 9–24] days since symptoms initiation) and 21 healthy noninfected individuals. Patients were categorized as hospitalized not requiring oxygen therapy (n = 6), hospitalized requiring low-flow oxygen (n = 23), and hospitalized requiring high-flow oxygen support (n = 11). A total of 1218 different micro(mi)RNAs were identified. When compared with healthy noninfected donors, SARS-CoV-2 infected patients showed significantly (fold change [FC] >1.2 and adjusted p [padj] <0.05) altered expression of 190 miRNAs. The top 10 differentially expressed (DE) miRNAs were miR-122-5p, let-7b-5p, miR-146a-5p, miR-342-3p, miR-146b-5p, miR-629-5p, miR-24-3p, miR-12136, let-7a-5p, and miR-191-5p, which displayed FC and padj values ranging from 153 to 5 and 2.51 × 10-32 to 2.21 × 10-21, respectively, which unequivocally diagnosed SARS-CoV-2 infection. No differences in blood cell counts and biochemical plasma parameters, including interleukin 6, ferritin and D-dimer, were observed between COVID-19 patients on high-flow oxygen therapy, low-flow oxygen therapy, or not requiring oxygen therapy. Notably, 31 significantly deregulated miRNAs were found when patients on high- and low-flow oxygen therapy were compared. Similarly, 6 DE miRNAs were identified between patients on high flow and those not requiring oxygen therapy. SARS-CoV-2 infection generates a specific miRNA signature in hospitalized patients. Furthermore, specific miRNA profiles are associated with COVID-19 prognosis in severe patients.
Project description:We developed three different protein arrays to measure IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers.