Project description:PurposeTo provide a summary of the research advances on ocular images-based artificial intelligence on systemic diseases.MethodsNarrative literature review.ResultsOcular images-based artificial intelligence has been used in a variety of systemic diseases, including endocrine, cardiovascular, neurological, renal, autoimmune, and hematological diseases, and many others. However, the studies are still at an early stage. The majority of studies have used AI only for diseases diagnosis, and the specific mechanisms linking systemic diseases to ocular images are still unclear. In addition, there are many limitations to the research, such as the number of images, the interpretability of artificial intelligence, rare diseases, and ethical and legal issues.ConclusionWhile ocular images-based artificial intelligence is widely used, the relationship between the eye and the whole body should be more clearly elucidated.
Project description:We report the use of a deep learning model to design de novo proteins, based on the interplay of elementary building blocks via hierarchical patterns. The deep neural network model is based on translating protein sequences and structural information into a musical score that features different pitches for each of the amino acids, and variations in note length and note volume reflecting secondary structure information and information about the chain length and distinct protein molecules. We train a deep learning model whose architecture is composed of several long short-term memory units from data consisting of musical representations of proteins classified by certain features, focused here on alpha-helix rich proteins. Using the deep learning model, we then generate de novo musical scores and translate the pitch information and chain lengths into sequences of amino acids. We use a Basic Local Alignment Search Tool to compare the predicted amino acid sequences against known proteins, and estimate folded protein structures using the Optimized protein fold RecognitION method (ORION) and MODELLER. We find that the method proposed here can be used to design de novo proteins that do not exist yet, and that the designed proteins fold into specified secondary structures. We validate the newly predicted protein by molecular dynamics equilibration in explicit water and subsequent characterization using a normal mode analysis. The method provides a tool to design novel protein materials that could find useful applications as materials in biology, medicine, and engineering.
Project description:Recent advancements in artificial intelligence (AI) have accelerated the prediction of unknown protein structures. However, accurately predicting the three-dimensional (3D) structures of fusion proteins remains a difficult task because the current AI-based protein structure predictions are focused on the WT proteins rather than on the newly fused proteins in nature. Following the central dogma of biology, fusion proteins are translated from fusion transcripts, which are made by transcribing the fusion genes between two different loci through the chromosomal rearrangements in cancer. Accurately predicting the 3D structures of fusion proteins is important for understanding the functional roles and mechanisms of action of new chimeric proteins. However, predicting their 3D structure using a template-based model is challenging because known template structures are often unavailable in databases. Deep learning (DL) models that utilize multi-level protein information have revolutionized the prediction of protein 3D structures. In this review paper, we highlighted the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using DL models. We aim to explore both the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr-Rosetta and D-I-TASSER for modelling the 3D structures. HIGHLIGHTS: This review provides the overall pipeline and landscape of the prediction of the 3D structure of fusion protein. This review provides the factors that should be considered in predicting the 3D structures of fusion proteins using AI approaches in each step. This review highlights the latest advancements and ongoing challenges in predicting the 3D structure of fusion proteins using deep learning models. This review explores the advantages and challenges of employing AlphaFold2, RoseTTAFold, tr-Rosetta, and D-I-TASSER to model 3D structures.
Project description:Stem/progenitor cell transplantation is a potential novel therapeutic strategy to induce angiogenesis in ischemic tissue, which can prevent major amputation in patients with advanced peripheral artery disease (PAD). Thus, clinicians can use cell therapies worldwide to treat PAD. However, some cell therapy studies did not report beneficial outcomes. Clinical researchers have suggested that classical risk factors and comorbidities may adversely affect the efficacy of cell therapy. Some studies have indicated that the response to stem cell therapy varies among patients, even in those harboring limited risk factors. This suggests the role of undetermined risk factors, including genetic alterations, somatic mutations, and clonal hematopoiesis. Personalized stem cell-based therapy can be developed by analyzing individual risk factors. These approaches must consider several clinical biomarkers and perform studies (such as genome-wide association studies (GWAS)) on disease-related genetic traits and integrate the findings with those of transcriptome-wide association studies (TWAS) and whole-genome sequencing in PAD. Additional unbiased analyses with state-of-the-art computational methods, such as machine learning-based patient stratification, are suited for predictions in clinical investigations. The integration of these complex approaches into a unified analysis procedure for the identification of responders and non-responders before stem cell therapy, which can decrease treatment expenditure, is a major challenge for increasing the efficacy of therapies.
Project description:Protein structure refinement is the last step in protein structure prediction pipelines. Physics-based refinement via molecular dynamics (MD) simulations has made significant progress during recent years. During CASP14, we tested a new refinement protocol based on an improved sampling strategy via MD simulations. MD simulations were carried out at an elevated temperature (360 K). An optimized use of biasing restraints and the use of multiple starting models led to enhanced sampling. The new protocol generally improved the model quality. In comparison with our previous protocols, the CASP14 protocol showed clear improvements. Our approach was successful with most initial models, many based on deep learning methods. However, we found that our approach was not able to refine machine-learning models from the AlphaFold2 group, often decreasing already high initial qualities. To better understand the role of refinement given new types of models based on machine-learning, a detailed analysis via MD simulations and Markov state modeling is presented here. We continue to find that MD-based refinement has the potential to improve AI predictions. We also identified several practical issues that make it difficult to realize that potential. Increasingly important is the consideration of inter-domain and oligomeric contacts in simulations; the presence of large kinetic barriers in refinement pathways also continues to present challenges. Finally, we provide a perspective on how physics-based refinement could continue to play a role in the future for improving initial predictions based on machine learning-based methods.
Project description:MotivationProtein structure refinement is an important step of protein structure prediction. Existing approaches have generally used a single scoring function combined with Monte Carlo method or Molecular Dynamics algorithm. The one-dimension optimization of a single energy function may take the structure too far away without a constraint. The basic motivation of our study is to reduce the bias problem caused by minimizing only a single energy function due to the very diversity of different protein structures.ResultsWe report a new Artificial Intelligence-based protein structure Refinement method called AIR. Its fundamental idea is to use multiple energy functions as multi-objectives in an effort to correct the potential inaccuracy from a single function. A multi-objective particle swarm optimization algorithm-based structure refinement is designed, where each structure is considered as a particle in the protocol. With the refinement iterations, the particles move around. The quality of particles in each iteration is evaluated by three energy functions, and the non-dominated particles are put into a set called Pareto set. After enough iteration times, particles from the Pareto set are screened and part of the top solutions are outputted as the final refined structures. The multi-objective energy function optimization strategy designed in the AIR protocol provides a different constraint view of the structure, by extending the one-dimension optimization to a new three-dimension space optimization driven by the multi-objective particle swarm optimization engine. Experimental results on CASP11, CASP12 refinement targets and blind tests in CASP 13 turn to be promising.Availability and implementationThe AIR is available online at: www.csbio.sjtu.edu.cn/bioinf/AIR/.Supplementary informationSupplementary data are available at Bioinformatics online.
Project description:Clinical routine in hepatology involves the diagnosis and treatment of a wide spectrum of metabolic, infectious, autoimmune and neoplastic diseases. Clinicians integrate qualitative and quantitative information from multiple data sources to make a diagnosis, prognosticate the disease course, and recommend a treatment. In the last 5 years, advances in artificial intelligence (AI), particularly in deep learning, have made it possible to extract clinically relevant information from complex and diverse clinical datasets. In particular, histopathology and radiology image data contain diagnostic, prognostic and predictive information which AI can extract. Ultimately, such AI systems could be implemented in clinical routine as decision support tools. However, in the context of hepatology, this requires further large-scale clinical validation and regulatory approval. Herein, we summarise the state of the art in AI in hepatology with a particular focus on histopathology and radiology data. We present a roadmap for the further development of novel biomarkers in hepatology and outline critical obstacles which need to be overcome.
Project description:Artificial Intelligence (AI)-based deep learning methods for predicting protein structures are reshaping knowledge development and scientific discovery. Recent large-scale application of AI models for protein structure prediction has changed perceptions about complicated biological problems and empowered a new generation of structure-based hypothesis testing. It is well-recognized that proteins have a modular organization according to archetypal folds. However, it is yet to be determined if predicted structures are tuned to one conformation of flexible proteins or if they represent average conformations. Further, whether or not the answer is protein fold-dependent. Therefore, in this study, we analyzed 2878 proteins with at least ten distinct experimental structures available, from which we can estimate protein topological rigidity verses heterogeneity from experimental measurements. We found that AlphaFold v2 (AF2) predictions consistently return one specific form to high accuracy, with 99.68% of distinct folds (n = 623 out of 628) having an experimental structure within 2.5Å RMSD from a predicted structure. Yet, 27.70% and 10.82% of folds (174 and 68 out of 628 folds) have at least one experimental structure over 2.5Å and 5Å RMSD, respectively, from their AI-predicted structure. This information is important for how researchers apply and interpret the output of AF2 and similar tools. Additionally, it enabled us to score fold types according to how homogeneous versus heterogeneous their conformations are. Importantly, folds with high heterogeneity are enriched among proteins which regulate vital biological processes including immune cell differentiation, immune activation, and metabolism. This result demonstrates that a large amount of protein fold flexibility has already been experimentally measured, is vital for critical cellular processes, and is currently unaccounted for in structure prediction databases. Therefore, the structure-prediction revolution begets the protein dynamics revolution!
Project description:BackgroundCOVID-19 progresses slowly and negatively affects many people. However, mild to moderate symptoms develop in most infected people, who recover without hospitalization. Therefore, the development of early diagnosis and treatment strategies is essential. One of these methods is proteomic technology based on the blood protein profiling technique. This study aims to classify three COVID-19 positive patient groups (mild, severe, and critical) and a control group based on the blood protein profiling using deep learning (DL), random forest (RF), and gradient boosted trees (GBTs).MethodsThe dataset consists of 93 samples (60 COVID-19 patients, 33 control), and 370 variables obtained from an open-source website. The current dataset contains age, gender, and 368 protein, used to predict the relationship between disease severity and proteins using DL and machine learning approaches (RF, GBTs). An evolutionary algorithm tunes hyperparameters of the models and the predictions are assessed through accuracy, sensitivity, specificity, precision, F1 score, classification error, and kappa performance metrics.ResultsThe accuracy of RF (96.21%) was higher as compared to DL (94.73%). However, the ensemble classifier GBTs produced the highest accuracy (96.98%). TGB1BP2 in the cardiovascular II panel and MILR1 in the inflammation panel were the two most important proteins associated with disease severity.ConclusionsThe proposed model (GBTs) achieved the best prediction of disease severity based on the proteins compared to the other algorithms. The results point out that changes in blood proteins associated with the severity of COVID-19 may be used in monitoring and early diagnosis/treatment of the disease.
Project description:Purpose of reviewArtificial intelligence has advanced rapidly in recent years and has provided powerful tools to aid with the diagnosis, management, and treatment of ophthalmic diseases. This article aims to review the most current clinical artificial intelligence applications in anterior segment diseases, with an emphasis on microbial keratitis, keratoconus, dry eye syndrome, and Fuchs endothelial dystrophy.Recent findingsMost current artificial intelligence approaches have focused on developing deep learning algorithms based on various imaging modalities. Algorithms have been developed to detect and differentiate microbial keratitis classes and quantify microbial keratitis features. Artificial intelligence may aid with early detection and staging of keratoconus. Many advances have been made to detect, segment, and quantify features of dry eye syndrome and Fuchs. There is significant variability in the reporting of methodology, patient population, and outcome metrics.SummaryArtificial intelligence shows great promise in detecting, diagnosing, grading, and measuring diseases. There is a need for standardization of reporting to improve the transparency, validity, and comparability of algorithms.