Project description:In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Project description:The photoperiodic response is critical for plants to adjust their reproductive phase to the most favorable season. Wheat heads earlier under long days (LD) than under short days (SD) and this difference is mainly regulated by the PHOTOPERIOD1 (PPD1) gene. Tetraploid wheat plants carrying the Ppd-A1a allele with a large deletion in the promoter head earlier under SD than plants carrying the wildtype Ppd-A1b allele with an intact promoter. Phytochromes PHYB and PHYC are necessary for the light activation of PPD1, and mutations in either of these genes result in the downregulation of PPD1 and very late heading time. We show here that both effects are reverted when the phyB mutant is combined with loss-of-function mutations in EARLY FLOWERING 3 (ELF3), a component of the Evening Complex (EC) in the circadian clock. We also show that the wheat ELF3 protein interacts with PHYB and PHYC, is rapidly modified by light, and binds to the PPD1 promoter in planta (likely as part of the EC). Deletion of the ELF3 binding region in the Ppd-A1a promoter results in PPD1 upregulation at dawn, similar to PPD1 alleles with intact promoters in the elf3 mutant background. The upregulation of PPD1 is correlated with the upregulation of the florigen gene FLOWERING LOCUS T1 (FT1) and early heading time. Loss-of-function mutations in PPD1 result in the downregulation of FT1 and delayed heading, even when combined with the elf3 mutation. Taken together, these results indicate that ELF3 operates downstream of PHYB as a direct transcriptional repressor of PPD1, and that this repression is relaxed both by light and by the deletion of the ELF3 binding region in the Ppd-A1a promoter. In summary, the regulation of the light mediated activation of PPD1 by ELF3 is critical for the photoperiodic regulation of wheat heading time.
Project description:BACKGROUND: The deleterious effect of a mutation can be reverted by a second-site interacting residue. This is an epistatic compensatory process explaining why mutations that are deleterious in some species are tolerated in phylogenetically related lineages, rendering evident that those mutations are, by all means, only deleterious in the species-specific context. Although an extensive and refined theoretical framework on compensatory evolution does exist, the supporting evidence remains limited, especially for protein models. In this current study, we focused on the molecular mechanism underlying the epistatic compensatory process in mammalian mitochondrial OXPHOS proteins using a combination of in-depth structural and sequence analyses. RESULTS: Modeled human structures were used in this study to predict the structural impairment and recovery of deleterious mutations alone and combined with an interacting compensatory partner, respectively. In two cases, COI and COIII, intramolecular interactions between spatially linked residues restore the folding pattern impaired by the deleterious mutation. In a third case, intermolecular contact between mitochondrial CYB and nuclear CYT1 encoded components of the cytochrome bc1 complex are likely to restore protein binding. Moreover, we observed different modes of compensatory evolution that have resulted in either a quasi-simultaneous occurrence of a mutation and corresponding compensatory partner, or in independent occurrences of mutations in distinct lineages that were always preceded by the compensatory site. CONCLUSION: Epistatic interactions between individual replacements involving deleterious mutations seems to follow a parsimonious model of evolution in which genomes hold pre-compensating states that subsequently tolerate deleterious mutations. This phenomenon is likely to have been constraining the variability at coevolving sites and shaping the interaction between the mitochondrial and the nuclear genome.
Project description:Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.
Project description:In the present study in wheat, GWAS was conducted for identification of marker trait associations (MTAs) for the following six grain morphology traits: (1) grain cross-sectional area (GCSA), (2) grain perimeter (GP), (3) grain length (GL), (4) grain width (GWid), (5) grain length-width ratio (GLWR) and (6) grain form-density (GFD). The data were recorded on a subset of spring wheat reference set (SWRS) comprising 225 diverse genotypes, which were genotyped using 10,904 SNPs and phenotyped for two consecutive years (2017-2018, 2018-2019). GWAS was conducted using five different models including two single-locus models (CMLM, SUPER), one multi-locus model (FarmCPU), one multi-trait model (mvLMM) and a model for Q x Q epistatic interactions. False discovery rate (FDR) [P value -log10(p) ≥ 5] and Bonferroni correction [P value -log10(p) ≥ 6] (corrected p value < 0.05) were applied to eliminate false positives due to multiple testing. This exercise gave 88 main effect and 29 epistatic MTAs after FDR and 13 main effect and 6 epistatic MTAs after Bonferroni corrections. MTAs obtained after Bonferroni corrections were further utilized for identification of 55 candidate genes (CGs). In silico expression analysis of CGs in different tissues at different parts of the seed at different developmental stages was also carried out. MTAs and CGs identified during the present study are useful addition to available resources for MAS to supplement wheat breeding programmes after due validation and also for future strategic basic research.Supplementary informationThe online version contains supplementary material available at 10.1007/s12298-022-01164-w.
Project description:Reduced activity of two genes in combination often has a more detrimental effect than expected. Such epistatic interactions not only occur when genes are mutated but also due to variation in gene expression, including among isogenic individuals in a controlled environment. We hypothesized that these 'epigenetic' epistatic interactions could place important constraints on the evolution of gene expression. Consistent with this, we show here that yeast genes with many epistatic interaction partners typically show low expression variation among isogenic individuals and low variation across different conditions. In addition, their expression tends to remain stable in response to the accumulation of mutations and only diverges slowly between strains and species. Yeast promoter architectures, the retention of gene duplicates, and the divergence of expression between humans and chimps are also consistent with selective pressure to reduce the likelihood of harmful epigenetic epistatic interactions. Based on these and previous analyses, we propose that the tight regulation of epistatic interaction network hubs makes an important contribution to the maintenance of a robust, 'canalized' phenotype. Moreover, that epigenetic epistatic interactions may contribute substantially to fitness defects when single genes are deleted.
Project description:Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.
Project description:The aim of the present work is to investigate the existence of epistatic interactions possibly influencing psychotropic agents' response between rs6740584 within Cyclic adenosine monophosphate Response Element Binding (CREB) and rs12775799 within cAMP response element-modulator (CREM) variants in bipolar disorder (BD) and major depressive disorder (MDD). All BD and MDD patients were administered with the Young Mania Rating Scale (YMRS) and Hamilton Depression Rating Scale (HAMD) at baseline and at endpoint, respectively. A multiple regression model was employed to investigate the existence of possible epistatic interactions between the two variants and diverse clinical factors including drug response in affective disorders. No significant epistatic interaction was observed between rs6740584 within CREB and rs12775799 within CREM on both symptom improvement and other clinical factors in affective disorders. Our preliminary results suggest that no epistatic interaction between rs6740584 within CREB and rs12775799 within CREM should exist on clinical improvement and clinical factors in affective disorders.