Unknown

Dataset Information

0

Comparisons of Quality, Correctness, and Similarity Between ChatGPT-Generated and Human-Written Abstracts for Basic Research: Cross-Sectional Study.


ABSTRACT:

Background

ChatGPT may act as a research assistant to help organize the direction of thinking and summarize research findings. However, few studies have examined the quality, similarity (abstracts being similar to the original one), and accuracy of the abstracts generated by ChatGPT when researchers provide full-text basic research papers.

Objective

We aimed to assess the applicability of an artificial intelligence (AI) model in generating abstracts for basic preclinical research.

Methods

We selected 30 basic research papers from Nature, Genome Biology, and Biological Psychiatry. Excluding abstracts, we inputted the full text into ChatPDF, an application of a language model based on ChatGPT, and we prompted it to generate abstracts with the same style as used in the original papers. A total of 8 experts were invited to evaluate the quality of these abstracts (based on a Likert scale of 0-10) and identify which abstracts were generated by ChatPDF, using a blind approach. These abstracts were also evaluated for their similarity to the original abstracts and the accuracy of the AI content.

Results

The quality of ChatGPT-generated abstracts was lower than that of the actual abstracts (10-point Likert scale: mean 4.72, SD 2.09 vs mean 8.09, SD 1.03; P<.001). The difference in quality was significant in the unstructured format (mean difference -4.33; 95% CI -4.79 to -3.86; P<.001) but minimal in the 4-subheading structured format (mean difference -2.33; 95% CI -2.79 to -1.86). Among the 30 ChatGPT-generated abstracts, 3 showed wrong conclusions, and 10 were identified as AI content. The mean percentage of similarity between the original and the generated abstracts was not high (2.10%-4.40%). The blinded reviewers achieved a 93% (224/240) accuracy rate in guessing which abstracts were written using ChatGPT.

Conclusions

Using ChatGPT to generate a scientific abstract may not lead to issues of similarity when using real full texts written by humans. However, the quality of the ChatGPT-generated abstracts was suboptimal, and their accuracy was not 100%.

SUBMITTER: Cheng SL 

PROVIDER: S-EPMC10760418 | biostudies-literature | 2023 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparisons of Quality, Correctness, and Similarity Between ChatGPT-Generated and Human-Written Abstracts for Basic Research: Cross-Sectional Study.

Cheng Shu-Li SL   Tsai Shih-Jen SJ   Bai Ya-Mei YM   Ko Chih-Hung CH   Hsu Chih-Wei CW   Yang Fu-Chi FC   Tsai Chia-Kuang CK   Tu Yu-Kang YK   Yang Szu-Nian SN   Tseng Ping-Tao PT   Hsu Tien-Wei TW   Liang Chih-Sung CS   Su Kuan-Pin KP  

Journal of medical Internet research 20231225


<h4>Background</h4>ChatGPT may act as a research assistant to help organize the direction of thinking and summarize research findings. However, few studies have examined the quality, similarity (abstracts being similar to the original one), and accuracy of the abstracts generated by ChatGPT when researchers provide full-text basic research papers.<h4>Objective</h4>We aimed to assess the applicability of an artificial intelligence (AI) model in generating abstracts for basic preclinical research.  ...[more]

Similar Datasets

| S-EPMC11237793 | biostudies-literature
| S-EPMC10616290 | biostudies-literature
| S-EPMC11297395 | biostudies-literature
| S-EPMC10133283 | biostudies-literature
| S-EPMC10866463 | biostudies-literature
| S-EPMC5017291 | biostudies-literature
| S-EPMC11199925 | biostudies-literature
| S-EPMC9377230 | biostudies-literature
| S-EPMC8730545 | biostudies-literature