Project description:We have previously shown the suitability of aerogels as scaffolds for neuronal cells. Here, we report on the use of superelastic shape memory polyurethane aerogels (SSMPA). SSMPA have a distinctly different stiffness than previously reported aerogels. The soft and deformable nature of SSMPA allowed for radial compression of the aerogel induced by a custom designed apparatus. This radial compression changed the pore diameter and surface roughness (Sa) of SSMPA, while maintaining similar stiffness. Two varieties of SSMPA were used, Mix-14 and Mix-18, with distinctly different pore diameters and Sa. Radial compression led to a decreased pore diameter, which, in turn, decreased the Sa. The use of custom designed apparatus and two types of SSMPA allowed us to examine the influence of stiffness, pore size, and Sa on the extension of processes (neurites) by PC12 neuronal cells. PC12 cells plated on SSMPA with a higher degree of radial compression extended fewer neurites per cell when compared to other groups. However, the average length of the neurites was significantly longer when compared to the unrestricted group and to those extended by cells plated on SSMPA with less radial compression. These results demonstrate that SSMPA with 1.9 µm pore diameter, 1.17 µm Sa, and 203 kPa stiffness provides the optimum combination of physical parameters for nerve regeneration.
Project description:Fibrous air filtration materials are highly desirable for particle removal from high-temperature emission sources. However, the existing commercial filter materials suffer from either low filtration efficiency or high pressure drop, due to the difficulty in achieving small fiber diameter and high porosity simultaneously. Herein, we report a facile strategy to fabricate mechanical robust fibrous aerogels by using dual-scale sized PAI/BMI filaments and fibers, which are derived from wet spinning and electrospinning technologies, respectively. The creativity of this design is that PAI/BMI filaments can serve as the enhancing skeleton and PAI/BMI fibers can assemble into high-porosity interconnected networks, enabling the improvement of both mechanical property and air filtration performance. The resultant dual-scale sized PAI/PBMI fibrous aerogels show a compressive stress of 8.36 MPa, a high filtration efficiency of 90.78% (particle diameter of 2.5 μm); for particle diameter over 5 μm, they have 99.99% ultra-high filtration efficiency, a low pressure drop of 20 Pa, and high QF of 0.12 Pa-1, as well as thermostable and fire-retardant properties (thermal decomposition temperature up to 342.7 °C). The successive fabrication of this material is of great significance for the govern of industrial dust.
Project description:Thermal insulation under extreme conditions requires materials that can withstand complex thermomechanical stress and retain excellent thermal insulation properties at temperatures exceeding 1,000 degrees Celsius1-3. Ceramic aerogels are attractive thermal insulating materials; however, at very high temperatures, they often show considerably increased thermal conductivity and limited thermomechanical stability that can lead to catastrophic failure4-6. Here we report a multiscale design of hypocrystalline zircon nanofibrous aerogels with a zig-zag architecture that leads to exceptional thermomechanical stability and ultralow thermal conductivity at high temperatures. The aerogels show a near-zero Poisson's ratio (3.3 × 10-4) and a near-zero thermal expansion coefficient (1.2 × 10-7 per degree Celsius), which ensures excellent structural flexibility and thermomechanical properties. They show high thermal stability with ultralow strength degradation (less than 1 per cent) after sharp thermal shocks, and a high working temperature (up to 1,300 degrees Celsius). By deliberately entrapping residue carbon species in the constituent hypocrystalline zircon fibres, we substantially reduce the thermal radiation heat transfer and achieve one of the lowest high-temperature thermal conductivities among ceramic aerogels so far-104 milliwatts per metre per kelvin at 1,000 degrees Celsius. The combined thermomechanical and thermal insulating properties offer an attractive material system for robust thermal insulation under extreme conditions.
Project description:Ceramic aerogels are highly efficient, lightweight, and chemically stable thermal insulation materials but their application is hindered by their brittleness and low strength. Flexible nanostructure-assembled compressible aerogels have been developed to overcome the brittleness but they still show low strength, leading to insufficient load-bearing capacity. Here we designed and fabricated a laminated SiC-SiOx nanowire aerogel that exhibits reversible compressibility, recoverable buckling deformation, ductile tensile deformation, and simultaneous high strength of up to an order of magnitude larger than other ceramic aerogels. The aerogel also shows good thermal stability ranging from -196 °C in liquid nitrogen to above 1200 °C in butane blow torch, and good thermal insulation performance with a thermal conductivity of 39.3 ± 0.4 mW m-1 K-1. These integrated properties make the aerogel a promising candidate for mechanically robust and highly efficient flexible thermal insulation materials.
Project description:Superelastic, arbitrary-shaped, and 3D assembled clay/graphene aerogels (CGAs) are fabricated using commercial foam as sacrificial skeleton. The CGAs possess superelasticity under compressive strain of 95% and compressive stress of 0.09-0.23 MPa. The use of clay as skeletal support significantly reduces the use of graphene by 50%. The hydrophobic CGAs show high solvent absorption capacity of 186-519 times its own weight. Moreover, both the compression and combustion methods can be adopted for reusing the CGAs. In particular, it is demonstrated a design of 3D assembled hydrophilic CGA equipped with salt collection system for continuous solar desalination. Due to energy recovery and brine transport management promoted by this design, the 3D assembled CGA system exhibits an extremely high evaporation rate of 4.11 kg m-2 h-1 and excellent salt-resistant property without salt precipitation even in 20 wt% brine for continuous 36 h illumination (1 kW m-2 ), which is the best reported result from the solar desalination devices. More importantly, salts can be collected conveniently by squeezing and drying the solution out of the salt collection system. The work provides new insights into the design of 3D assembled CGAs and advances their applications in continuous solar desalination and efficient oil/organic solvent adsorption.
Project description:Owing to their excellent elasticities and adaptability as sensing materials, ionic hydrogels exhibit significant promise in the field of intelligent wearable devices. Nonetheless, molecular chains within the polymer network of hydrogels are susceptible to damage, leading to crack extension. Hence, we drew inspiration from the composite structure of the human dermis to engineer a composite hydrogel, incorporating dopamine-modified elastic fibers as a reinforcement. This approach mitigates crack expansion and augments sensor sensitivity by fostering intermolecular forces between the dopamine on the fibers, the hydrogel backbone, and water molecules. The design of this composite hydrogel elevates its breaking tensile capacity from 35 KJ to 203 KJ, significantly enhancing the fatigue resistance of the hydrogel. Remarkably, its electrical properties endure stability even after 2000 cycles of testing, and it manifests heightened sensitivity compared to conventional hydrogel configurations. This investigation unveils a novel method for crafting composite-structured hydrogels.
Project description:This work reports the synthesis and characterization of preceramic- and polymer-derived SiOC aerogels obtained from a commercial siloxane resin. The preceramic aerogels were obtained by ambient pressure drying (ambigels) and CO2 supercritical drying. Despite different drying processes, the final ceramic ambi/aerogels have very similar microstructural features in density, porosity, pore size, and specific surface area. Both materials have shown promising results for oil sorption and water cleaning. Supercritically dried-SiOC aerogel had low thermal conductivity with 0.046 W·m-1·K-1 at RT and 0.073 W·m-1·K-1 at 500 °C. These results suggest that substituting the rather complicated and expensive CO2-SC drying with the more friendly and cheap ambient pressure drying can be done without having to accept significant microstructural/property degradation.
Project description:Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm-3, rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.
Project description:Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g-1) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.
Project description:Effective converse piezoelectric coefficient (d33,eff) mapping of poly(vinylidene fluoride) (PVDF) nanofibers with ceramic BaTiO3 nanoparticle inclusions obtained by electrospinning was carried out by piezoresponse force microscopy (PFM) in a peculiar dynamic mode, namely constant-excitation frequency-modulation (CE-FM), particularly suitable for the analysis of compliant materials. Mapping of single nanocomposite fibers was carried out to demonstrate the ability of CE-FM-PFM to investigate the nanostructure of semicrystalline polymers well above their glass transition temperature, such as PVDF, by revealing the distribution of piezoelectric activity of the nanofiber, as well as of the embedded nanoparticles employed. A decreased piezoelectric activity at the nanoparticle site compared to the polymeric fiber was found. This evidence can be rationalized in terms of a tradeoff between the dielectric constants and piezoelectric coefficients of the component materials, as well as on the mutual orientation of polar axes.