Ontology highlight
ABSTRACT:
SUBMITTER: de Kok JWTM
PROVIDER: S-EPMC10781731 | biostudies-literature | 2024 Jan
REPOSITORIES: biostudies-literature
de Kok Jip W T M JWTM van Rosmalen Frank F Koeze Jacqueline J Keus Frederik F van Kuijk Sander M J SMJ Castela Forte José J Schnabel Ronny M RM Driessen Rob G H RGH van Herpt Thijs T W TTW Sels Jan-Willem E M JEM Bergmans Dennis C J J DCJJ Lexis Chris P H CPH van Doorn William P T M WPTM Meex Steven J R SJR Xu Minnan M Borrat Xavier X Cavill Rachel R van der Horst Iwan C C ICC van Bussel Bas C T BCT
Scientific reports 20240110 1
We validated a Deep Embedded Clustering (DEC) model and its adaptation for integrating mixed datatypes (in this study, numerical and categorical variables). Deep Embedded Clustering (DEC) is a promising technique capable of managing extensive sets of variables and non-linear relationships. Nevertheless, DEC cannot adequately handle mixed datatypes. Therefore, we adapted DEC by replacing the autoencoder with an X-shaped variational autoencoder (XVAE) and optimising hyperparameters for cluster sta ...[more]