Ontology highlight
ABSTRACT:
SUBMITTER: Chanda T
PROVIDER: S-EPMC10789736 | biostudies-literature | 2024 Jan
REPOSITORIES: biostudies-literature
Chanda Tirtha T Hauser Katja K Hobelsberger Sarah S Bucher Tabea-Clara TC Garcia Carina Nogueira CN Wies Christoph C Kittler Harald H Tschandl Philipp P Navarrete-Dechent Cristian C Podlipnik Sebastian S Chousakos Emmanouil E Crnaric Iva I Majstorovic Jovana J Alhajwan Linda L Foreman Tanya T Peternel Sandra S Sarap Sergei S Özdemir İrem İ Barnhill Raymond L RL Llamas-Velasco Mar M Poch Gabriela G Korsing Sören S Sondermann Wiebke W Gellrich Frank Friedrich FF Heppt Markus V MV Erdmann Michael M Haferkamp Sebastian S Drexler Konstantin K Goebeler Matthias M Schilling Bastian B Utikal Jochen S JS Ghoreschi Kamran K Fröhling Stefan S Krieghoff-Henning Eva E Brinker Titus J TJ
Nature communications 20240115 1
Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists' decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alon ...[more]