Project description:Populations of the non-native Asian shore crab, Hemigrapsus sanguineus, now dominate the rocky intertidal of southern New England, USA. High abundances suggest the recent invader may have experienced enhanced success as a result of enemy release. While larvae and juveniles may serve as a food source for ecologically important species, little is known about predation of mature H. sanguineus or the influence of habitat on predation pressure. To assess natural predation rates of adult H. sanguineus, crabs were tethered in the intertidal at Clarks Cove in New Bedford, MA. Crabs were left in situ for half of a tidal cycle then observed for signs of predation. Results of separate high and low tide trials showed that adult crabs were preyed upon at both high and low tide, though at a significantly higher rate during high tide during both daytime and nighttime, suggesting predation by aquatic species is greater than that by terrestrial species. To investigate the role of habitat as refuge from predation, a laboratory experiment manipulated the complexity of habitat provided to crabs in the presence of a native fish predator. Results indicate better refuge is provided by more complex shelter. Together, findings suggest that fish, crabs, and/or diving birds are important predators for H. sanguineus in the invaded range and that habitat refuge acts to reduce predation pressure.
Project description:Some researchers have suggested that corals living in deeper reefs may escape heat stress experienced by shallow corals. We evaluated the potential of deep coral reef refugia from bleaching stress by leveraging a long record of satellite-derived sea surface temperature data with a temporal, spatial, and depth precision of in situ temperature records. We calculated an in situ stress metric using a depth bias-adjusted threshold for 457 coral reef sites among 49 islands in the western and central Pacific Ocean over the period 2001-2017. Analysis of 1,453 heating events found no meaningful depth refuge from heat stress down to 38 m, and no significant association between depth and subsurface heat stress. Further, the surface metric underestimated subsurface stress by an average of 39.3%, across all depths. Combining satellite and in situ temperature data can provide bleaching-relevant heat stress results to avoid misrepresentation of heat stress exposure at shallow reefs.
Project description:Resource-seeking behaviours are ordinarily constrained by physiological needs and threats of danger, and the loss of these controls is associated with pathological reward seeking1. Although dysfunction of the dopaminergic valuation system of the brain is known to contribute towards unconstrained reward seeking2,3, the underlying reasons for this behaviour are unclear. Here we describe dopaminergic neural mechanisms that produce reward seeking despite adverse consequences in Drosophila melanogaster. Odours paired with optogenetic activation of a defined subset of reward-encoding dopaminergic neurons become cues that starved flies seek while neglecting food and enduring electric shock punishment. Unconstrained seeking of reward is not observed after learning with sugar or synthetic engagement of other dopaminergic neuron populations. Antagonism between reward-encoding and punishment-encoding dopaminergic neurons accounts for the perseverance of reward seeking despite punishment, whereas synthetic engagement of the reward-encoding dopaminergic neurons also impairs the ordinary need-dependent dopaminergic valuation of available food. Connectome analyses reveal that the population of reward-encoding dopaminergic neurons receives highly heterogeneous input, consistent with parallel representation of diverse rewards, and recordings demonstrate state-specific gating and satiety-related signals. We propose that a similar dopaminergic valuation system dysfunction is likely to contribute to maladaptive seeking of rewards by mammals.
Project description:Extrafloral (EF) nectaries recruit carnivorous arthropods that protect plants from herbivory, but they can also be exploited by nectar thieves. We studied the opportunistic, targeted predation (and destruction) of EF nectaries by insects, and the localized chemical defences that plants presumably use to minimize this effect. In field and laboratory experiments, we identified insects that were possibly responsible for EF nectary predation in Vicia faba (fava bean) and determined the extent and accuracy of the feeding damage done to the EF nectaries by these insects. We also performed biochemical analyses of plant tissue samples in order to detect microscale distribution patterns of chemical defences in the area of the EF nectary. We observed selective, targeted feeding on EF nectaries by several insect species, including some that are otherwise not primarily herbivorous. Biochemical analyses revealed high concentrations of l-3,4-dihydroxyphenylalanine, a non-protein amino acid that is toxic to insects, near and within the EF nectaries. These results suggest that plants allocate defences to the protection of EF nectaries from predation, consistent with expectations of optimal defence theory, and that this may not be entirely effective, as insects limit their exposure to these defences by consuming only the secreting tissue of the nectary.
Project description:Mammals in arid zones have to trade off thermal stress, predation pressure, and time spent foraging in a complex thermal landscape. We quantified the relationship between the environmental heat load and activity of a mammal community in the hot, arid Kalahari Desert. We deployed miniature black globe thermometers within the existing Snapshot Safari camera trap grid on Tswalu Kalahari Reserve, South Africa. Using the camera traps to record species' activity throughout the 24-h cycle, we quantified changes in the activity patterns of mammal species in relation to heat loads in their local environment. We compared the heat load during which species were active between two sites with differing predator guilds, one where lion (Panthera leo) biomass dominated the carnivore guild and the other where lions were absent. In the presence of lion, prey species were generally active under significantly higher heat loads, especially during the hot and dry spring. We suggest that increased foraging under high heat loads highlights the need to meet nutritional requirements while avoiding nocturnal activity when predatory pressures are high. Such a trade-off may become increasingly costly under the hotter and drier conditions predicted to become more prevalent as a result of climate change within the arid and semi-arid regions of southern Africa.
Project description:Corals are a major habitat-building life-form on tropical reefs that support a quarter of all species in the ocean and provide ecosystem services to millions of people. Marine heat waves continue to threaten and shape reef ecosystems by killing individual coral colonies and reducing their diversity. However, marine heat waves are spatially and temporally heterogeneous, and so too are the environmental and biological factors mediating coral resilience during and following thermal events. This combination results in highly variable outcomes at both the coral bleaching and mortality stages of every event. This, in turn, impedes the assessment of changing reef-scale patterns of thermal tolerance or places of resistance known as reef refugia. We developed a large-scale, high-resolution coral mortality monitoring capability based on airborne imaging spectroscopy and applied it to a major marine heat wave in the Hawaiian Islands. While water depth and thermal stress strongly mediated coral mortality, relative coral loss was also inversely correlated with preheat-wave coral cover, suggesting the existence of coral refugia. Subsequent mapping analyses indicated that potential reef refugia underwent up to 40% lower coral mortality compared with neighboring reefs, despite similar thermal stress. A combination of human and environmental factors, particularly coastal development and sedimentation levels, differentiated resilient reefs from other more vulnerable reefs. Our findings highlight the role that coral mortality mapping, rather than bleaching monitoring, can play for targeted conservation that protects more surviving corals in our changing climate.
Project description:Increased exposure to heat-stress leads to an increasingly altered transcriptome in Caenorhabditis elegans. It is however unclear how the recovery from heat-stress progresses after increased heat-stress exposures. Hence, we exposed populations of the N2 strain to a 2, 3, 4, or 6 hour heat-shock of 35 degrees Celsius and took samples from 1 - 4 hours after termination of stress. This experiment was conduced in three biological replicates.
Project description:Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we explore how to combine historical observations of crop yields and weather with climate model simulations to produce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear technology trend and interactions between temperature and precipitation, and applied specifically for a case study of maize in France. The relative importance of precipitation variability for maize yields in France has decreased significantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum temperature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield projections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate model projections using observed data to ensure both reliable temperature mean and daily variability characteristics, and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected increased daily maximum temperatures over France, improved technology will need to increase base level yields by 12% to be confident about maintaining current levels of yield for the period 2016-2035; the current rate of yield technology increase is not sufficient to meet this target.
Project description:Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens.
Project description:A natural rsbU mutant of Staphylococcus aureus, unable to activate the alternative transcription factor sigma(B) via the RsbU pathway and therefore forming unpigmented colonies, produced first-step teicoplanin-resistant mutants upon selection for growth in the presence of teicoplanin, of which the majority were of an intense orange color. By using an asp23 promoter-luciferase fusion as an indicator, the pigmented mutants were shown to express increased sigma(B) activity. Increased sigma(B) activity was associated with point mutations in rsbW, releasing sigma(B) from sequestration by the anti-sigma factor RsbW, or to promoter mutations increasing the sigma(B)/RsbW ratio. Genetic manipulations involving the sigB operon suggested that the mutations within the operon were associated with the increase in teicoplanin resistance. The upregulation of sigma(B) suggests that a sigma(B)-controlled gene(s) is directly or indirectly involved in the development of teicoplanin resistance in S. aureus. Carotenoids do not contribute to teicoplanin resistance, since inactivation of the dehydrosqualene synthase gene crtM abolished pigment formation without affecting teicoplanin resistance. The relevant sigma(B)-controlled target genes involved in teicoplanin resistance remain to be identified.