Project description:Crenicichla is the largest and most widely distributed genus of Neotropical cichlids. Here, we analyze a mtDNA dataset comprising 681 specimens (including Teleocichla, a putative ingroup of Crenicichla) and 77 out of 105 presently recognized valid species (plus 10 out of 36 nominal synonyms plus over 50 putatively new species) from 129 locations in 31 major river drainages throughout the whole distribution of the genus in South America. Based on these data we make an inventory of diversity and highlight taxa and biogeographic areas worthy of further sampling effort and conservation protection. Using three methods of molecular species delimitation, we find between 126 and 168 species-like clusters, i.e., an average increase of species diversity of 65-121% with a range of increase between species groups. The increase ranges from 0% in the Missioneira and Macrophthama groups, through 25-40% (Lacustris group), 50-87% (Reticulata group, Teleocichla), 68-168% (Saxatilis group), 125-200% (Wallacii group), and 158-241% in the Lugubris group. We found a high degree of congruence between clusters derived from the three used methods of species delimitation. Overall, our results recognize substantially underestimated diversity in Crenicichla including Teleocichla. Most of the newly delimited putative species are from the Amazon-Orinoco-Guiana (AOG) core area (Greater Amazonia) of the Neotropical region, especially from the Brazilian and Guiana shield areas of which the former is under the largest threat and largest degree of environmental degradation of all the Amazon.
Project description:Helvella is a widespread, frequently encountered fungal group appearing in forests, but the species diversity and molecular phylogeny of Helvella in China remains incompletely understood. In this work, we performed comprehensive phylogenetic analyses using multilocus sequence data. Six datasets were employed, including a five-locus concatenated dataset (ITS, nrLSU, tef1-α, rpb2, hsp), a two-locus concatenated dataset (ITS, nrLSU), and four single-locus datasets (ITS) that were divided based on the four different phylogenetic clades of Helvella recognized in this study. A total of I 946 sequences were used, of which 713 were newly generated, including 170 sequences of ITS, 174 sequences of nrLSU, 131 sequences of tef1-α, 107 sequences of rpb2 and 131 sequences of hsp. The phylogeny based on the five-locus concatenated dataset revealed that Helvellas. str. is monophyletic and four phylogenetic clades are clearly recognized, i.e., Acetabulum clade, Crispa clade, Elastica clade, and Lacunosa clade. A total of 24 lineages or subclades were recognized, II of which were new, the remaining 13 corresponding with previous studies. Chinese Helvella species are distributed in 22 lineages across four clades. Phylogenetic analyses based on the two-locus concatenated dataset and four single-locus datasets confirmed the presence of at least 93 phylogenetic species in China. Among them, 58 are identified as known species, including a species with a newly designated lectotype and epitype, 18 are newly described in this paper, and the remaining 17 taxa are putatively new to science but remain unnamed due to the paucity or absence of ascomatal materials. In addition, the Helvella species previously recorded in China are discussed. A list of 76 confirmed species, including newly proposed species, is provided. The occurrence of H. crispa and H. elastica are not confirmed although both are commonly recorded in China. Citation: Mao N, Xu YY, Zhang YX, Zhou H, Huang XB, Hou CL, Fan L (2023). Phylogeny and species diversity of the genus Helvella with emphasis on eighteen new species from China. Fungal Systematics and Evolution 12: 111-152. doi: 10.3114/fuse.2023.12.08.
Project description:BackgroundThere are estimated 180-220 species of Tuber described in the world, but the diversity of the genus in Taiwan is poorly known, with only two species recorded, i.e., Tuber formosanum and T. furfuraceum. During our survey of hypogenous fungi in Taiwan, a whitish truffle belongs to Puberulum clade was collected from roots of Keteleeria fortunei var. cyclolepis in central Taiwan and appeared to differ from the two recorded species.ResultsThe whitish truffle is herein described as a new species Tuber elevatireticulatum, which is distinguished from closely resembled Asian whitish truffles species like Tuber thailandicum, T. panzhihuanense, T. latisporum and T. sinopuberulum by the association with Keteleeria host, small light brown ascocarps with a dark brown gleba, dark brownish and elliptical ascospores ornamented with a prominently raised alveolate reticulum. Molecular phylogenetic analyses of both ITS and LSU loci clearly supports T. elevatireticulatum as a new species without any significant incongruence.ConclusionsThe whitish truffle is herein described as a new species T. elevatireticulatum based on the evidence from morphology and DNA sequences. T. elevatireticulatum is the first scientific record of whitish truffle in Taiwan.
Project description:Truffles are certainly the most expensive mushrooms; the price depends primarily on the species and secondly on the origin. Because of the price differences for the truffle species, food fraud is likely to occur, and the visual differentiation is difficult within the group of white and within the group of black truffles. Thus, the aim of this study was to develop a reliable method for the authentication of five commercially relevant truffle species via Fourier transform near-infrared (FT-NIR) spectroscopy as an easy to handle approach combined with chemometrics. NIR-data from 75 freeze-dried fruiting bodies were recorded. Various spectra pre-processing techniques and classification methods were compared and validated using nested cross-validation. For the white truffle species, the most expensive Tuber magnatum could be differentiated with an accuracy of 100% from Tuber borchii. Regarding the black truffle species, the relatively expensive Tuber melanosporum could be distinguished from Tuber aestivum and the Chinese truffles with an accuracy of 99%. Since the most expensive Italian Tuber magnatum is highly prone to fraud, the origin was investigated and Italian T. magnatum truffles could be differentiated from non-Italian T. magnatum truffles by 83%. Our results demonstrate the potential of FT-NIR spectroscopy for the authentication of truffle species.
Project description:We describe a new truffle species, Tuber torulosum, based on molecular and morphological analyses. This species forms a single globose ascospore per ascus, pale yellow in color, as do Japanese T. flavidosporum and Chinese T. turmericum and T. xanthomonosporum in the Japonicum clade of the Tuber phylogeny. However, it can be distinguished from them microscopically by its whitish tomentose mycelium that partially covers the ascoma surface and the mesh size of its spore ornamentation. Cystidia are moniliform and yellowish to reddish. Molecular phylogenetic analysis using the internal transcribed spacer and partial large subunit regions of ribosomal DNA also supports T. torulosum as a distinct species. On the basis of our results, we provide a key to species in the Japonicum clade.
Project description:The truffle and ectomycorrhizal roots formed by Tuber sp. were collected from the rhizosphere of Quercus aliena in Korea. The morphological characteristics of the ascoma, and molecular phylogenetic analysis using sequences from the internal transcribed spacer (ITS) and large subunit (LSU) of ribosomal DNA, translation elongation factor 1-alpha (TEF), and RNA polymerase second largest subunit (RPB2) regions confirmed the distinct morphology of the truffle. This truffle belongs to a monophyletic clade among the other Tuber species in the phylogeny. This study describes the truffle, Tuber koreanum, as a new species reported from Korea.
Project description:Tuber luomae, a new truffle species known only from the Pacific Northwest, USA, is distinguished by spiny, non-reticulate spores and a two-layered peridium - the outermost layer (pellis) consists of inflated, globose to subpolygonal cells and the inner (subpellis) of narrow hyphae. ITS sequence analyses show that it has phylogenetic affinity to other Tuber species in the Rufum clade. The only other members of the Rufum clade with a strongly developed peridiopellis of large, inflated cells are the southern European T. malacodermum and T. pustulatum and the northern Mexican T. theleascum. We find it interesting that this peridial structure that is uncommon in the Rufum clade has been found in geographically disjunct species.
Project description:Ecology of hypogeic mycorrhizal fungi, such as truffles, remains largely unknown, both in terms of their geographical distribution and their environmental niches. Occurrence of true truffles (Tuber spp.) was therefore screened using specific polymerase chain reaction (PCR) assays and subsequent PCR amplicon sequencing in tree roots collected at 322 field sites across the Czech Republic. These sites spanned a wide range of climatic and soil conditions. The sampling was a priori restricted to areas thought to be suitable for Tuber spp. inasmuch as they were characterized by weakly acidic to alkaline soils, warmer climate, and with tree species previously known to host true truffles. Eight operational taxonomic units (OTUs) corresponding to Tuber aestivum, T. borchii, T. foetidum, T. rufum, T. indicum, T. huidongense, T. dryophilum, and T. oligospermum were detected. Among these, T. borchii was the OTU encountered most frequently. It was detected at nearly 19% of the sites. Soil pH was the most important predictor of Tuber spp. distribution. Tuber borchii preferred weakly acidic soils, T. foetidum and T. rufum were most abundant in neutral soils, and T. huidongense was restricted to alkaline soils. Distribution of T. aestivum was mainly dictated by climate, with its range restricted to the warmest sites. Host preferences of the individual Tuber spp. were weak compared to soil and climatic predictors, with the notable exception that T. foetidum appeared to avoid oak trees. Our results open the way to better understanding truffle ecology and, through this new knowledge, also to better-informed trufficulture.
Project description:"Sanghuang" is a popular fungus used as a Chinese traditional medicine. In fact, it represents a group of fungi belonging to the genus Sanghuangporus, but little is known about its origin and biogeography. The aim of this study was to characterize the molecular relationships, origin and biogeographical distribution of Sanghuangporus. The multi-locus phylogenetic analyses were used to infer the phylogenetic relationships. In addition, based on Bayesian evolutionary analysis using sequences from the internal transcribed spacer (ITS), nuclear large subunit rDNA (nLSU), translation elongation factor 1-α (EF1-α), and the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2), we used a fungus fossil-based approach to gain insight into the divergence time of species in Sanghuangporus. The molecular phylogeny strongly supports the monophyly of Sanghuangporus (MP = 100%, ML = 100%, and BPP = 1.00), and 13 species are recognized in this genus. The Bayesian uncorrelated lognormal relaxed molecular clock using BEAST and reconstructed ancestral areas indicate that the maximum crown age of Sanghuangporus is approximately 30.85 million years. East Asia is the likely ancestral area (38%). Dispersal and differentiation to other continents then occurred during the late Middle Miocene and Pliocene. The ancestor of Sanghuangporus probably originated in palaeotropical Northeast Asia and covered Northeast Asia and East Africa during the Oligocene-Miocene, hosted by plants that expanded via the "Gomphotherium Landbridge." Six kinds of dispersal routes are proposed, including intercontinental dispersal events of three clades between Northeast Asia and East Africa, between East Asia and North America, and between Northeast Asia and Europe.
Project description:AimGlobal-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species.LocationGlobal.MethodsWe compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°.ResultsWe showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts.Main conclusionsWe demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in the richness of these six freshwater groups reflects broader patterns of biodiversity in fresh water.