Project description:Live, attenuated Shigella vaccine candidates, such as Shigella sonnei strain WRSS1, Shigella flexneri 2a strain SC602, and Shigella dysenteriae 1 strain WRSd1, are attenuated principally by the loss of the VirG(IcsA) protein. These candidates have proven to be safe and immunogenic in volunteer trials and in one study, efficacious against shigellosis. One drawback of these candidate vaccines has been the reactogenic symptoms of fever and diarrhea experienced by the volunteers, that increased in a dose-dependent manner. New, second-generation virG(icsA)-based S. sonnei vaccine candidates, WRSs2 and WRSs3, are expected to be less reactogenic while retaining the ability to generate protective levels of immunogenicity seen with WRSS1. Besides the loss of VirG(IcsA), WRSs2 and WRSs3 also lack plasmid-encoded enterotoxin ShET2-1 and its paralog ShET2-2. WRSs3 further lacks MsbB2 that reduces the endotoxicity of the lipid A portion of the bacterial LPS. Studies in cell cultures and in gnotobiotic piglets demonstrate that WRSs2 and WRSs3 have the potential to cause less diarrhea due to loss of ShET2-1 and ShET2-2 as well as alleviate febrile symptoms by loss of MsbB2. In guinea pigs, WRSs2 and WRSs3 were as safe, immunogenic and efficacious as WRSS1.
Project description:The levels of antigen-specific Antibodies in Lymphocyte Supernatant (ALS) using an ELISA are being used to evaluate mucosal immune responses as an alternate to measuring the number of Antibody Secreting Cells (ASCs) using an ELISpot assay. A recently completed trial of two novel S. sonnei live oral vaccine candidates WRSs2 and WRSs3 established that both candidates were safe, well tolerated and immunogenic in a vaccine dose-dependent manner. Previously, mucosal immune responses were measured by assaying IgA- and IgG-ASC in peripheral blood mononuclear cells (PBMCs). In this report, the magnitude of the S. sonnei antigen-specific IgA- and IgG-ALS responses was measured and correlated with previously described ASCs, serum antibodies, fecal IgA and vaccine shedding. Overall, the magnitude of S. sonnei anti-Invaplex50 ALS was higher than that of LPS or IpaB, and both vaccines demonstrated a more robust IgA-ALS response than IgG; however, compared to WRSs3, the magnitude and percentage of responders were higher among WRSs2 recipients for IgA- or IgG-ALS. All WRSs2 vaccinees at the two highest doses responded for LPS and Invaplex50-specific IgA-ALS and 63-100% for WRSs3 vaccinees responded. Regardless of the vaccine candidate, vaccine dose or detecting antigen, the kinetics of ALS responses were similar peaking on days 7 to 9 and returning to baseline by day 14. The ALS responses were vaccine-specific since no responses were detected among placebo recipients at any time. A strong correlation and agreement between responders/non-responders were noted between ALS and other mucosal (ASC and fecal IgA) and systemic (serum antibody) immune responses. These data indicate that the ALS assay can be a useful tool to evaluate mucosal responses to oral vaccination, an observation noted with trials of other bacterial diarrheal pathogens. Furthermore, this data will guide the list of immunological assays to be conducted for efficacy trials in different populations. It is hoped that an antigen-specific-ALS titer may be a key mucosal correlate of protection, a feature not currently available for any Shigella vaccines candidates. https://clinicaltrials.gov/show/NCT01336699.
Project description:Effective vaccines are needed to combat diarrheal diseases due to Shigella. Two live oral S. sonnei vaccine candidates, WRSs2 and WRSs3, attenuated principally by the lack of spreading ability, as well as the loss of enterotoxin and acyl transferase genes, were tested for safety and immunogenicity. Healthy adults 18-45 years of age, assigned to 5 cohorts of 18 subjects each (WRSs2 (n = 8), WRSs3 (n = 8) or placebo (n = 2)) were housed in an inpatient facility and administered a single oral dose of study agent 5 min after ingestion of oral bicarbonate. Ascending dosages of vaccine (from 103 CFU to 107 CFU) were evaluated. On day 8, treatment with ciprofloxacin (500 mg BID for 3 days) was initiated and subjects were discharged home 2 days after completing antibiotics. Subjects returned for outpatient visits on day 14, 28 and 56 post-vaccination for monitoring and collection of stool and blood samples. Both WRSs2 and WRSs3 were generally well tolerated and safe over the entire dose range. Among the 80 vaccinees, 11 subjects developed diarrhea, 8 of which were mild and did not affect daily activities. At the 107 CFU dose, moderate diarrhea occurred in one WRSs2 subject while at the same dose of WRSs3, 2 subjects had moderate or severe diarrhea. Vaccinees mounted dose-dependent mucosal and systemic immune responses that appeared to correlate with fecal shedding. S. sonnei vaccine candidates WRSs2 and WRSs3 are safe and immunogenic over a wide dose range. Future steps will be to select the most promising candidate and move to human challenge models for efficacy of the vaccine.
Project description:Shigella causes bacillary dysentery and is responsible for a high burden of disease globally. Several studies have emphasized the value of functional antibody activity to understand Shigella immunity and correlates of protection. The anti-microbial function of local (mucosal) antibodies and their contribution to preventing Shigella infection remain unknown. The goal of this study was to identify the functional humoral immune effectors elicited by two Shigella sonnei live oral vaccine candidates, WRSs2 and WRSs3. Complement-dependent bactericidal [serum bactericidal antibody (SBA)/bactericidal antibody (BA)] and opsonophagocytic killing antibody (OPKA) activity were determined in sera and stool extracts as indicators of systemic and local anti-microbial immunity. High levels of SBA/BA and OPKA were detected in serum as well as in fecal extracts from volunteers who received a single dose of WRSs2 and WRSs3. Functional antibody activity peaked on days 10 and 14 post-vaccination in fecal and serum samples, respectively. Bactericidal and OPKA titers were closely associated. Peak fold rises in functional antibody titers in serum and fecal extracts were also associated. Antibody activity interrogated in IgG and IgA purified from stool fractions identified IgG as the primary driver of mucosal bactericidal and OPKA activity, with minimal functional activity of IgA alone, highlighting an underappreciated role for IgG in bacterial clearance in the mucosa. The combination of IgG and IgA in equal proportions enhanced bactericidal and OPKA titers hinting at a co-operative or synergistic action. Our findings provide insight into the functional anti-microbial capacity of vaccine-induced mucosal IgG and IgA and propose an operative local humoral effector of protective immunity.IMPORTANCEThere is an urgent need for a safe, effective, and affordable vaccine against Shigella. Understanding the immunological underpinning of Shigella infection and the make-up of protective immunity is critical to achieve the best approach to prevent illness caused by this mucosal pathogen. We measured the complement-dependent bactericidal and opsonophagocytic antibody killing in serum and stool extracts from adult volunteers vaccinated with Shigella sonnei live oral vaccine candidates WRSs2 and WRSs3. For the first time, we detected functional antibody responses in stool samples that were correlated with those in sera. Using purified stool IgA and IgG fractions, we found that functional activity was mediated by IgG, with some help from IgA. These findings provide insight into the functional anti-microbial capacity of vaccine-induced mucosal IgG and IgA and support future studies to identify potential markers of protective mucosal immunity.
Project description:Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.
Project description:Two Shigella species, Shigella flexneri and Shigella sonnei, cause approximately 90% of bacterial dysentery worldwide. While S. flexneri is the dominant species in low-income countries, S. sonnei causes the majority of infections in middle- and high-income countries. S. flexneri is a prototypic cytosolic bacterium; once intracellular, it rapidly escapes the phagocytic vacuole and causes pyroptosis of macrophages, which is important for pathogenesis and bacterial spread. In contrast, little is known about the invasion, vacuole escape, and induction of pyroptosis during S. sonnei infection of macrophages. We demonstrate here that S. sonnei causes substantially less pyroptosis in human primary monocyte-derived macrophages and THP1 cells. This is due to reduced bacterial uptake and lower relative vacuole escape, which results in fewer cytosolic S. sonnei and hence reduced activation of caspase-1 inflammasomes. Mechanistically, the O-antigen (O-Ag), which in S. sonnei is contained in both the lipopolysaccharide and the capsule, was responsible for reduced uptake and the type 3 secretion system (T3SS) was required for vacuole escape. Our findings suggest that S. sonnei has adapted to an extracellular lifestyle by incorporating multiple layers of O-Ag onto its surface compared to other Shigella species.IMPORTANCE Diarrheal disease remains the second leading cause of death in children under five. Shigella remains a significant cause of diarrheal disease with two species, S. flexneri and S. sonnei, causing the majority of infections. S. flexneri are well known to cause cell death in macrophages, which contributes to the inflammatory nature of Shigella diarrhea. Here, we demonstrate that S. sonnei causes less cell death than S. flexneri due to a reduced number of bacteria present in the cell cytosol. We identify the O-Ag polysaccharide which, uniquely among Shigella spp., is present in two forms on the bacterial cell surface as the bacterial factor responsible. Our data indicate that S. sonnei differs from S. flexneri in key aspects of infection and that more attention should be given to characterization of S. sonnei infection.
Project description:Shigella sonnei UCN59, isolated during an outbreak of S. sonnei in January 2007, was resistant to azithromycin (MIC 64 mg/L). The isolate contained a plasmid-borne mph(A) gene encoding a macrolide 2 -phosphotransferase that inactivates macrolides. Emergence of the mph(A) gene in S. sonnei may limit usefulness of azithromycin for treatment of shigellosis.
Project description:O antigen is part of the lipopolysaccharide present in the outer membrane of gram-negative bacteria. The surface-exposed O antigen is subject to selection by the host immune system, which may account for the maintenance of many different O-antigen forms. Characteristically, all genes specific to O-antigen synthesis are clustered in a region close to the his and gnd genes on the chromosome of Escherichia coli and related species. Shigella sonnei, essentially a clone of E. coli (E. coli clone Sonnei), is an important human pathogen and is unusual in that its O-antigen gene cluster is located on a plasmid. Our results suggest that it once had a normal chromosomal O-antigen gene cluster which has been largely deleted. We suggest that the O antigen encoded by the plasmid-borne genes offered a selective advantage in adapting to a new environment and that the chromosomal O-antigen genes were eventually inactivated. We also identified, by PCR and sequencing, a potential ancestor of E. coli Sonnei among the 166 known E. coli serotype strains.
Project description:The InvE protein positively regulates the expression of virulence genes ipaBCD in Shigella sonnei. The InvE has significant homology with ParB of plasmid P1, which is known as a plasmid partitioning factor with DNA binding ability. Although the DNA binding activity of InvE has been predicted, it is not known whether the DNA binding activity is necessary for type III secretion system-associated gene expression. In this study, we determined the transcription start site of the icsB-ipaBCD operon (ipa operon) and constructed a series of deletions of the icsB promoter region in the Escherichia coli K-12 background. The deletion study revealed that an 86-bp region upstream of the icsB transcription start site was essential for expression of the ipa operon, where the ParB binding motif (ParB BoxA-like sequence) was observed. Purified glutathione S-transferase-InvE fusion protein bound directly to the -93 to -54 region (designating the icsB transcription start site as nucleotide +1) containing the ParB BoxA-like sequence. These results indicated that InvE bound directly to the promoter region.