Project description:The research described in this article presents a new contactless method of introducing mechanical vibrations into the base material during CO2 laser welding of low-carbon steel. The experimental procedure boiled down to subjecting a P235GH steel pipe with a 60 mm diameter, 3.2 mm wall thickness and 500 mm length to acoustic signals with a resonant frequency during the welding process. Acoustic vibrations with a frequency of 1385, 110 and 50 Hz were introduced into the pipe along the axis and transversely from the outer surface. The obtained welds were then subjected to structural tests and Vickers hardness measurements. The results of comparative tests show the impact of such introduced vibrations on the granular structure of the welds, as well as on their microhardness in specific areas, such as the face, penetration depth and the heat-affected zone. The effectiveness of the proposed method of introducing vibrations in the scope of grain size and shape as well as changes in the hardness distribution in the obtained welds is demonstrated.
Project description:In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude-frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here, a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. This model identification utilizes Taken's delay-embedding theorem, as well as a least square fit to the Taylor expansion of the sampling map associated with that embedding. The SSMs are then constructed for the sampling map using the parametrization method for invariant manifolds, which assumes that the manifold is an embedding of, rather than a graph over, a spectral subspace. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy.
Project description:Membrane viscosity is an important property of cell biology, which determines cellular function, development and disease progression. Various experimental and computational methods have been developed to investigate the mechanics of cells. However, there have been no experimental measurements of the membrane viscosity at high-frequencies in live cells. High frequency measurements are important because they can probe viscoelastic effects. Here, we investigate the membrane viscosity at gigahertz-frequencies through the damping of the acoustic vibrations of gold nanoplates. The experiments are modeled using a continuum mechanics theory which reveals that the membranes display viscoelasticity, with an estimated relaxation time of ca. 5.7+2.4/-2.7 ps. We further demonstrate that membrane viscoelasticity can be used to differentiate a cancerous cell line (the human glioblastoma cells LN-18) from a normal cell line (the mouse brain microvascular endothelial cells bEnd.3). The viscosity of cancerous cells LN-18 is lower than that of healthy cells bEnd.3 by a factor of three. The results indicate promising applications of characterizing membrane viscoelasticity at gigahertz-frequency in cell diagnosis.
Project description:The vibrational modes of semiconductor and metal nanostructures occur in the MHz to GHz frequency range, depending on dimensions. These modes are at the heart of nano-optomechanical devices, and understanding how they dissipate energy is important for applications of the devices. In this paper ultrafast transient absorption microscopy has been used to examine the breathing modes of a single gold nanoplate, where up to four overtones were observed. Analysis of the frequencies and amplitudes of the modes using a simple continuum mechanics model shows that the system behaves as a free plate, even though it is deposited onto a surface with no special preparation. The overtones decay faster than the fundamental mode, which is not predicted by continuum mechanics calculations of mode damping due to radiation of sound waves. Possible reasons for this effect include frequency dependent thermoelastic effects in the nanoplate, and/or flow of acoustic energy out of the excitation region.
Project description:The diffuse scattering pattern produced by frozen crystals of the 70S ribosome from Thermus thermophilus is as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it.
Project description:Coherent acoustic phonon vibrations of Au nanopolyhedrons, including nanocubes, nano-octahedrons, and nanocuboctahedrons, in aqueous solutions and poly(vinyl alcohol) (PVA) films, were investigated using transient absorption (TA) spectroscopy combined with finite element analysis based on continuum elastic theory. In each type of nanopolyhedron, two vibrational modes with similar quality factors (Qs) and phases were observed, suggesting that both were induced by thermal expansion. The low-frequency vibrational mode represents a tip-to-tip displacement in each nanopolyhedron, whereas the high-frequency mode is the breathing vibration of the whole particle and reveals morphology dependence, displaying a face-to-face displacement in nanocuboctahedrons, an edge-to-edge displacement in nano-octahedrons, and a combination of face-to-face and edge-to-edge displacements in nanocubes. Moreover, a clear phonon beat was identified in the two vibrational modes of the nanocuboctahedrons. Our experimental results provide a possible application of morphology-controllable metal nanoresonators.
Project description:It is important to compare the results of Corneal Visualization Scheimpflug Technology instrument (CST) measurements and Reichert Ocular Response Analyzer (ORA) parameters. The purpose of the study was to investigate the association between CST measurements and ORA parameters in ninety-five patients with primary open-angle glaucoma. Measurements of CST, ORA, axial length (AL), average corneal curvature (CC), central corneal thickness (CCT) and intraocular pressure (IOP) with Goldmann applanation tonometry (GAT) were carried out. The association between CST and ORA parameters was assessed using linear regression analysis, with model selection based on the second order bias corrected Akaike Information Criterion index. Measurements from ORA (corneal hysteresis [CH] and corneal response factor [CRF]) had high intraclass correlation coefficients (ICC) and low coefficients of variation, but some CST parameters showed much lower reproducibility, namely: A1 length, A2 length, highest concavity time and peak distance. Of 12 CST parameters tested, 8 were significantly correlated with CH and 10 were significantly correlated with CRF, however, the magnitude of the correlation coefficients were weak to moderate at best. The optimal model to explain CH using CST measurements was given by: CH = -76.3 + 4.6*A1 time + 1.9*A2 time + 3.1 * highest concavity deformation amplitude + 0.016*CCT (R2 = 0.67, p <0.001). Similarly, the optimal model for CRF was given by: CRF = -53.5 + 4.2*A1 time + 1.9*A1 length + 20.8*A1 deformation amplitude + 0.8*A2 time + 0.017*CCT (R2 = 0.73, p <0.001). ORA parameters show higher reproducibility than CST measurements. Although many CST parameters are significantly related to ORA parameters, the strengths of these relationships are weak to moderate.
Project description:Optoacoustic vibrations in optical fibres have enabled spatially resolved sensing, but the weak electrostrictive force hinders their application. Here, we introduce photothermally induced acoustic vibrations (PTAVs) to realize high-performance fibre-based optoacoustic sensing. Strong acoustic vibrations with a wide range of axial wavenumbers kz are photothermally actuated by using a focused pulsed laser. The local transverse resonant frequency and loss coefficient can be optically measured by an intra-core acoustic sensor via spectral analysis. Spatially resolved sensing is further achieved by mechanically scanning the laser spot. The experimental results show that the PTAVs can be used to resolve the acoustic impedance of the surrounding fluid at a spatial resolution of approximately 10 μm and a frame rate of 50 Hz. As a result, PTAV-based optoacoustic sensing can provide label-free visualization of the diffusion dynamics in microfluidics at a higher spatiotemporal resolution.
Project description:Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.
Project description:Mechanical vibrations affect multiple cell properties, including its diffusivity, entropy, internal content organization, and thus-function. Here, we used Differential Interference Contrast (DIC), confocal, and Total Internal Reflection Fluorescence (TIRF) microscopies to study mechanical vibrations in live (Jurkat) T cells. Vibrations were measured via the motion of intracellular particles and plasma membrane. These vibrations depend on adenosine triphosphate (ATP) consumption and on Myosin II activity. We then used spectral analysis of these vibrations to distinguish the effects of thermal agitation, ATP-dependent mechanical work and cytoskeletal visco-elasticity. Parameters of spectral analyses could be related to mean square displacement (MSD) analyses with specific advantages in characterizing intracellular mechanical work. We identified two spectral ranges where mechanical work dominated vibrations of intracellular components: 0-3 Hz for intracellular particles and the plasma-membrane, and 100-150 Hz for the plasma-membrane. The 0-3 Hz vibrations of the cell membrane that we measured in an experimental model of immune synapse (IS) are expected to affect the IS formation and function in effector cells. It may also facilitate immunological escape of extensively vibrating malignant cells.