Unknown

Dataset Information

0

Genomic dissection and mutation-specific target discovery for breast cancer PIK3CA hotspot mutations.


ABSTRACT:

Background

Recent advancements in high-throughput genomics and targeted therapies have provided tremendous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless of affected codon or phenotype.

Results

In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel bearing two distinct hotspot PIK3CA mutations, E545K and H1047R, to accurately identify targetable differences between mutations within the same gene. We performed RNA-seq and ATAC-seq and identified distinct transcriptomic and epigenomic differences associated with each PIK3CA hotspot mutation. We used this data to curate a select CRISPR knock out screen to identify mutation-specific gene pathway vulnerabilities. These data revealed AREG as a E545K-preferential target that was further validated through in vitro analysis and publicly available patient databases.

Conclusions

Using our multi-modal genomics framework, we discover distinct differences in genomic regulation between PIK3CA hotspot mutations, suggesting the PIK3CA mutations have different regulatory effects on the function and downstream signaling of the PI3K complex. Our results demonstrate the potential to rapidly uncover mutation specific molecular targets, specifically AREG and a proximal gene regulatory region, that may provide clinically relevant therapeutic targets. The methods outlined provide investigators with an integrative strategy to identify mutation-specific targets for the treatment of other oncogenic mutations in an isogenic system.

SUBMITTER: Miranda AX 

PROVIDER: S-EPMC10802285 | biostudies-literature | 2024 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genomic dissection and mutation-specific target discovery for breast cancer <i>PIK3CA</i> hotspot mutations.

Miranda Adam X AX   Kemp Justin J   Davidson Brad B   Bellomo Sara Erika SE   Agan Verda V   Manoni Alexandra A   Marchiò Caterina C   Croessmann Sarah S   Park Ben H BH   Hodges Emily E  

bioRxiv : the preprint server for biology 20240104


<h4>Background</h4>Recent advancements in high-throughput genomics and targeted therapies have provided tremendous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless of affected codon or phenotype.<h4>Results</h4>In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel bearing two  ...[more]

Similar Datasets

2023-12-01 | GSE247822 | GEO
2023-12-01 | GSE247821 | GEO
2023-12-01 | GSE247819 | GEO
2023-12-01 | GSE248041 | GEO
| PRJNA1040776 | ENA
| PRJNA1040785 | ENA
| PRJNA1040784 | ENA
| PRJNA1041446 | ENA
| S-EPMC5591392 | biostudies-literature
| S-EPMC6966585 | biostudies-literature