Project description:A straight, non-sporulating, Gram-variable bacillus (HKU24(T)) was recovered from the blood culture of a patient with metastatic breast carcinoma. After repeated subculturing in BACTEC Plus Anaerobic/F blood culture broth, HKU24(T) grew on brucella agar as non-hemolytic, pinpoint colonies after 96 h of incubation at 37 degrees C in an anaerobic environment and aerobic environment with 5% CO2. Growth was enhanced with a streak of Staphylococcus aureus. HKU24(T) was non-motile and catalase-negative, but positive for alkaline phosphatase, beta-glucosidase, and alpha-glucosidase. It hydrolyzed phenylphosphonate and reduced resazurin. 16S rRNA, groEL, gyrB, recA, and rpoB sequencing showed that HKU24(T) occupies a distinct phylogenetic position among the Leptotrichia species, being most closely related to Leptotrichia trevisanii. Using HKU24(T) groEL, gyrB, recA, and rpoB gene-specific primers, fragments of these genes were amplified from one of 20 oral specimens. Based on phenotypic and genotypic characteristics, we propose a new species, Leptotrichia hongkongensis sp. nov., to describe this bacterium.
Project description:In order to improve our understanding on the microbial complexity associated with Grade C/molar-incisor pattern periodontitis (GC/MIP), we surveyed the oral and fecal microbiomes of GC/MIP and compared to non-affected individuals (Control). Seven Afro-descendants with GC/MIP and seven age/race/gender-matched controls were evaluated. Biofilms from supra/subgingival sites (OB) and feces were collected and submitted to 16S rRNA sequencing. Aggregatibacter actinomycetemcomitans (Aa) JP2 clone genotyping and salivary nitrite levels were determined. Supragingival biofilm of GC/MIP presented greater abundance of opportunistic bacteria. Selenomonas was increased in subgingival healthy sites of GC/MIP compared to Control. Synergistetes and Spirochaetae were more abundant whereas Actinobacteria was reduced in OB of GC/MIP compared to controls. Aa abundance was 50 times higher in periodontal sites with PD≥ 4 mm of GC/MIP than in controls. GC/MIP oral microbiome was characterized by a reduction in commensals such as Kingella, Granulicatella, Haemophilus, Bergeyella, and Streptococcus and enrichment in periodontopathogens, especially Aa and sulfate reducing Deltaproteobacteria. The oral microbiome of the Aa JP2-like+ patient was phylogenetically distant from other GC/MIP individuals. GC/MIP presented a higher abundance of sulfidogenic bacteria in the feces, such as Desulfovibrio fairfieldensis, Erysipelothrix tonsillarum, and Peptostreptococcus anaerobius than controls. These preliminary data show that the dysbiosis of the microbiome in Afro-descendants with GC/MIP was not restricted to affected sites, but was also observed in supragingival and subgingival healthy sites, as well as in the feces. The understanding on differences of the microbiome between healthy and GC/MIP patients will help in developing strategies to improve and monitor periodontal treatment.
Project description:The North American beaver (Castor canadensis) has long been considered an engineering marvel, transforming landscapes and shaping biological diversity through its dam building behavior. While the beaver possesses conspicuous morphological features uniquely adapted for the use of woody plants as construction materials and dietary staples, relatively little is known about the specialized microorganisms inhabiting the beaver gastrointestinal tract and their functional roles in determining host nutrition. Here we use a combination of shotgun metagenomics, functional screening and carbohydrate biochemistry to chart the community structure and metabolic power of the beaver fecal microbiome. We relate this information to the metabolic capacity of other wood feeding and hindgut fermenting organisms and profile the functional repertoire of glycoside hydrolase (GH) families distributed among and between population genome bins. Metagenomic screening revealed novel mechanisms of xylan oligomer degradation involving GH43 enzymes from uncharacterized subfamilies and divergent polysaccharide utilization loci, indicating the potential for synergistic biomass deconstruction. Together, these results open a functional metagenomic window on less conspicuous adaptations enabling the beaver microbiome to efficiently convert woody plants into host nutrition and point toward rational design of enhanced enzyme mixtures for biorefining process streams.
Project description:Tibial dyschondroplasia (TD) is a metabolic tibial-tarsal disorder occurring in fast-growing poultry, and its diagnosis is mainly based on an invasive method. Here, we profiled the fecal gut microbiome and metabolome of broilers with and without TD to identify potential non-invasive and non-stress biomarkers of TD. First, TD broilers with the most pronounced clinical signs during the experiment were screened and faecal samples were collected for integrated microbiome and metabolomics analysis. Moreover, the diagnostic potential of identified biomarkers was further validated throughout the experiment. It was noted that the microbial and metabolic signatures of TD broilers differed from those of normal broilers. TD broilers were characterized by enriched bacterial OTUs of the genus Klebsiella, and depleted genera [Ruminococcus], Dorea, Ruminococcus, Oscillospira, Ochrobactrum, and Sediminibacterium. In addition, a total of 189 fecal differential metabolites were identified, mainly enriched in the purine, vitamin and amino acid metabolism, which were closely associated with differential microbiota and tibia-related indicators. Furthermore, three fecal metabolites were screened, including 4-hydroxybenzaldehyde, which distinguished TD from normal broilers with extremely high specificity and was superior to serum bone markers. These results indicated that gut microbiota equilibrium might influence the pathogenesis of TD by modulating host metabolism, and the identified fecal metabolite 4-hydroxybenzaldehyde might be a potential and non-invasive biomarker for predicting TD in chickens.
Project description:Growing evidence has linked an altered host fecal microbiome composition with health status, common chronic diseases, and institutionalization in vulnerable older adults. However, fewer studies have described microbiome changes in healthy older adults without major confounding diseases or conditions, and the impact of aging on the microbiome across different body sites remains unknown. Using 16S ribosomal RNA gene sequencing, we reconstructed the composition of oral and fecal microbiomes in young (23-32; mean = 25 years old) and older (69-94; mean = 77 years old) healthy community-dwelling research subjects. In both body sites, we identified changes in minor bacterial operational taxonomic units (OTUs) between young and older subjects. However, the composition of the predominant bacterial species of the healthy older group in both microbiomes was not significantly different from that of the young cohort, which suggests that dominant bacterial species are relatively stable with healthy aging. In addition, the relative abundance of potentially pathogenic genera, such as Rothia and Mycoplasma, was enriched in the oral microbiome of the healthy older group relative to the young cohort. We also identified several OTUs with a prevalence above 40% and some were more common in young and others in healthy older adults. Differences with aging varied for oral and fecal samples, which suggests that members of the microbiome may be differentially affected by aging in a tissue-specific fashion. This is the first study to investigate both oral and fecal microbiomes in the context of human aging, and provides new insights into interactions between aging and the microbiome within two different clinically relevant sites.
Project description:The intestinal microbiota is increasingly recognized as a crucial player in the development and maintenance of various chronic conditions, including obesity and associated metabolic diseases. While most research focuses on the fecal microbiota due to its easier accessibility, the small intestine, as a major site for nutrient sensing and absorption, warrants further investigation to determine its microbiota composition and functions. Here, we conducted a clinical research project in 30 age- and sex-matched participants with (n = 15) and without (n = 15) obesity. Duodenojejunal fluid was obtained by aspiration during endoscopy. Phenotyping included clinical variables related to metabolic status, lifestyle, and psychosocial factors using validated questionnaires. We performed metagenomic analyses of the oral, duodenojejunal, and fecal microbiome, alongside metabolomic data from duodenojejunal fluid and feces, integrating these data with clinical and lifestyle information. Our results highlight significant associations between duodenojejunal microbiota composition and usual dietary intake, as well as clinical phenotypes, with larger effect sizes than the associations between these variables and fecal microbiota. Notably, we found that the duodenojejunal microbiota of patients with obesity exhibited higher diversity and showed distinct differences in the abundance of several duodenojejunal microbiota species compared with individuals without obesity. Our findings support the relevance of studying the role of the small intestinal microbiota in the pathogenesis of nutrition-related diseases.
Project description:The purpose of this study was to identify fecal bacterial microbiome changes in patients with chronic human immunodeficiency virus (HIV) infection in China. Bacterial 16S rRNA genes were amplified, sequenced (454 pyrosequencing), and clustered into operational taxonomic units using the QIIME software. Relative abundance at the phylum and genus levels were calculated. Alpha diversity was determined by Chao 1 and observed-species indices, and beta diversity was determined by double principal component analysis using the estimated phylogeny-based unweighted Unifrac distance matrices. Fecal samples of the patients with chronic HIV-infection tended to be enriched with bacteria of the phyla Firmicutes (47.20% ± 0.43 relative abundance) and Proteobacteria (37.21% ± 0.36) compared with those of the non-HIV infected controls (17.95% ± 0.06 and 3.81% ± 0.02, respectively). Members of the genus Bilophila were exclusively detected in samples of the non-HIV infected controls. Bacteroides and arabacteroides were more abundant in the chronic HIV-infected patients. Our study indicated that chronic HIV-infected patients in China have a fecal bacterial microbiome composition that is largely different from that found in non-HIV infected controls, and further study is needed to evaluate whether microbiome changes play a role in disease complications in the distal gut, including opportunistic infections.
Project description:Fecal microbiota transplants (FMTs) have been successful at treating digestive and skin conditions in dogs. The degree to which the microbiome is impacted by FMT in a cohort of dogs has not been thoroughly investigated. Using 16S rRNA gene sequencing, we document the changes in the microbiome of fifty-four dogs that took capsules of lyophilized fecal material for their chronic diarrhea, vomiting, or constipation. We found that the relative abundances of five bacterial genera (Butyricicoccus, Faecalibacterium, Fusobacterium, Megamonas, and Sutterella) were higher after FMT than before FMT. Fecal microbiome alpha- and beta-diversity were correlated with kibble and raw food consumption, and prior antibiotic use. On average, 18% of the stool donor's bacterial amplicon sequence variants (ASVs) engrafted in the FMT recipient, with certain bacterial taxa like Bacteroides spp., Fusobacterium spp., and Lachnoclostridium spp. engrafting more frequently than others. Lastly, analyses indicated that the degree of overlap between the donor bacteria and the community of microbes already established in the FMT recipient likely impacts engraftment. Collectively, our work provides further insight into the microbiome and engraftment dynamics of dogs before and after taking oral FMTs.
Project description:Increasing data indicate that bats harbor diverse viruses, some of which cause severe human diseases. In this study, sequence-independent amplification and high-throughput sequencing (Solexa) were applied to the metagenomic analysis of viruses in bat fecal samples collected from 6 locations in China. A total of 8,746,417 reads with a length of 306,124,595 bp were obtained. Among these reads, 13,541 (0.15%) had similarity to phage sequences and 9,170 (0.1%) had similarity to eukaryotic virus sequences. A total of 129 assembled contigs (>100 nucleotides) were constructed and compared with GenBank: 32 contigs were related to phages, and 97 were related to eukaryotic viruses. The most frequent reads and contigs related to eukaryotic viruses were homologous to densoviruses, dicistroviruses, coronaviruses, parvoviruses, and tobamoviruses, a range that includes viruses from invertebrates, vertebrates, and plants. Most of the contigs had low identities to known viral genomic or protein sequences, suggesting that a large number of novel and genetically diverse insect viruses as well as putative mammalian viruses are transmitted by bats in China. This study provides the first preliminary understanding of the virome of some bat populations in China, which may guide the discovery and isolation of novel viruses in the future.
Project description:Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010-2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola. Further work is required to understand the individual and population level impact of this pathogen in Europe.