Project description:Due to the development of CRISPR technology, the era of effective editing of target genes has arrived. However, the offtarget problem that occurs when recognizing target DNA due to the inherent nature of CRISPR components remains the biggest task to be overcome in the future. In this review, the principle of inducing such unintended off-target editing is analyzed from the structural aspect of CRISPR, and the methodology that has been developed to reduce off-target editing until now is summarized. [BMB Reports 2024; 57(1): 12-18].
Project description:Terahertz instrumentation has improved significantly in recent years such that THz imaging systems have become more affordable and easier to use. THz systems can now be operated by non-THz experts greatly facilitating research into many potential applications. Due to the non-ionising nature of THz light and its high sensitivity to soft tissues, there is an increasing interest in biomedical applications including both in vivo and ex vivo studies. Additionally, research continues into understanding the origin of contrast and how to interpret terahertz biomedical images. This short review highlights some of the recent work in these areas and suggests some future research directions.
Project description:Pancreatic cancer has a dismal prognosis with an overall survival outcome of just 5% at five years. However, paralleling our improved understanding of the biology of pancreatic cancer, treatment paradigms have also continued to evolve with newer advances in surgical techniques, chemotherapeutic agents, radiation therapy (RT) techniques, and immunotherapy paradigms. RT dose, modality, fraction size, and sequencing are being evaluated actively, and the interplay between RT and immune effects has opened up newer avenues of research. In this review, we will emphasize recent advances in RT for pancreatic cancer, focusing on preoperative chemoradiation, RT dose escalation, sparing of the spleen to reduce lymphopenia, and combination of RT with immunotherapy.
Project description:The normal development and maturation of oocytes and sperm, the formation of fertilized ova, the implantation of early embryos, and the growth and development of foetuses are the biological basis of mammalian reproduction. Therefore, research on oocytes has always occupied a very important position in the life sciences and reproductive medicine fields. Various embryo engineering technologies for oocytes, early embryo formation and subsequent developmental stages and different target sites, such as gene editing, intracytoplasmic sperm injection (ICSI), preimplantation genetic diagnosis (PGD), and somatic cell nuclear transfer (SCNT) technologies, have all been established and widely used in industrialization. However, as research continues to deepen and target species become more advanced, embryo engineering technology has also been developing in a more complex and sophisticated direction. At the same time, the success rate also shows a declining trend, resulting in an extension of the research and development cycle and rising costs. By studying the existing embryo engineering technology process, we discovered three critical nodes that have the greatest impact on the development of oocytes and early embryos, namely, oocyte micromanipulation, oocyte electrical activation/reconstructed embryo electrofusion, and the in vitro culture of early embryos. This article mainly demonstrates the efforts made by researchers in the relevant technologies of these three critical nodes from an engineering perspective, analyses the shortcomings of the current technology, and proposes a plan and prospects for the development of embryo engineering technology in the future.
Project description:The mainstay of medical treatment has been tyrosine kinase inhibitors (TKIs) for renal cell cancer (RCC), cytotoxic chemotherapy for urothelial cancer (UC), and androgen deprivation therapy for prostate cancer. These therapeutic modalities still play important roles in these malignancies. However, immune checkpoint inhibitors (ICIs) that target PD-1/PD-L1 or CTLA-4 are being rapidly introduced for the treatment of metastatic urological cancers, just as they have been for other malignancies. Currently, the paradigm of medical treatment for patients with metastatic urological cancer is dramatically changing. Accordingly, we need to organize and summarize the new therapeutic tools, which include immune checkpoint inhibitors, poly (ADP-ribose) polymerase (PARP) inhibitors, and antibody-drug conjugates (ADCs). This review provides an overview of agents and regimens that have just launched or will be launched in the near future in Japan. Based on the promising anti-tumor efficacy and manageable safety profiles being demonstrated in clinical trials, these new agents and therapies are expected to be rapidly introduced in Japanese clinical practice. Additionally, the newly designed ADC, enfortumab vedotin, which comprises a fully human monoclonal antibody conjugated to an anti-cancerous agent via a protease-cleavable linker, has just been launched in Japan. In order to provide the optimal treatment for our patients, we need to completely understand these new therapeutic tools.
Project description:Hepatocellular carcinoma remains a deadly disease with poor prognosis in patients with unresectable cancer. Trans-arterial chemoembolization is the primary locoregional therapy for intermediate-stage hepatocellular carcinoma, with an estimated median overall survival of less than two years. For almost a decade, sorafenib has been the only standard systemic treatment for metastatic disease or tumors which progress or are considered unsuitable for locoregional therapy. Major breakthroughs have been made over the past few years in the management of hepatocellular carcinoma, especially in medical therapies for advanced disease. In this article, recent advances in intra-arterial therapy, multi-kinase inhibitors, and immunotherapy will be reviewed.
Project description:Infection and rejection in musculoskeletal trauma often pose challenges for natural healing, prompting the exploration of biomimetic organ and tissue transplantation as a common alternative solution. Polyhydroxyalkanoates (PHAs) are a large family of biopolyesters synthesised in microorganism, demonstrating excellent biocompatibility and controllable biodegradability for tissue remodelling and drug delivery. With different monomer-combination and polymer-types, multi-mechanical properties of PHAs making them have great application prospects in medical devices with stretching, compression, twist in long time, especially in musculoskeletal tissue engineering. This review systematically summarises the applications of PHAs in multiple tissues repair and drug release, encompassing areas such as bone, cartilage, joint, skin, tendons, ligament, cardiovascular tissue, and nervous tissue. It also discusses challenges encountered in their application, including high production costs, potential cytotoxicity, and uncontrollable particle size distribution. In conclusion, PHAs offer a compelling avenue for musculoskeletal system applications, striking a balance between biocompatibility and mechanical performance. However, addressing challenges in their production and application requires further research to unleash their full potential in tackling the complexities of musculoskeletal regeneration.
Project description:Radiotherapy and radiation oncology play a key role in the clinical management of patients suffering from oncological diseases. In clinical routine, anatomic imaging such as contrast-enhanced CT and MRI are widely available and are usually used to improve the target volume delineation for subsequent radiotherapy. Moreover, these modalities are also used for treatment monitoring after radiotherapy. However, some diagnostic questions cannot be sufficiently addressed by the mere use standard morphological imaging. Therefore, positron emission tomography (PET) imaging gains increasing clinical significance in the management of oncological patients undergoing radiotherapy, as PET allows the visualization and quantification of tumoral features on a molecular level beyond the mere morphological extent shown by conventional imaging, such as tumor metabolism or receptor expression. The tumor metabolism or receptor expression information derived from PET can be used as tool for visualization of tumor extent, for assessing response during and after therapy, for prediction of patterns of failure and for definition of the volume in need of dose-escalation. This review focuses on recent and current advances of PET imaging within the field of clinical radiotherapy / radiation oncology in several oncological entities (neuro-oncology, head & neck cancer, lung cancer, gastrointestinal tumors and prostate cancer) with particular emphasis on radiotherapy planning, response assessment after radiotherapy and prognostication.