Project description:With the expansion of cities and the development of industries, heavy metal pollution has caused a serious negative impact on the growth and development of animals and plants, which has become a global economic and social problem. Cadmium (Cd) is one of the main heavy metals that threaten the growth and development of plants, and it can lead to the imminent extinction of plants in severe cases. The part of upper reaches of the Yangtze River in China from Yibin to the Three Gorges Reservoir has been contaminated with varying degrees of Cd, and a rare and endangered plant called Myricaria laxiflora also lives in this area. The stress of heavy metal Cd on M. laxiflora populations is still unknown. In this study, we used the seedlings of M. laxiflora as materials, and adopted conventional physiological and biochemical analyses to characterize the morphological and physiological responses of M. laxiflora under different concentrations of Cd, and analyzed its response to Cd stress at the transcriptional level. The results showed that the wild population of M. laxiflora was stressed by the heavy metal Cd. High concentrations of Cd can inhibit the growth of M. laxiflora. M. laxiflora responded to the Cd stress through resistance substances such as malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and phytohormones such as auxin (IAA), gibberellin (GA) and abscisic acid (ABA). Transcriptome analysis was carried out on M. lasiflora seedlings exposed to 24 h, 48 h, and 72 h of Cd stress. Compared with 0 h (control), 2470, 11,707, and 11,733 differential expressed genes (DEGs) were identified, respectively. Among them, the number of down-regulated genes is more than the number of up-regulated genes. Transcriptome analysis showed that the upregulated genes were mainly enriched in MAPK signaling pathway, ethylene-induced pathway, ABA response pathway and other pathways, and the downregulated genes were mainly enriched in photosynthesis related pathways. Cd stress affected photosynthesis of M. laxiflora, and M. laxiflora may activate the MAPK signaling pathway through ethylene and ABA to improve the ability of Cd stress tolerance. These results reveal morphological changes, physiological and biochemical reactions and related key response pathways of M. laxiflora during Cd stress. It can provide a reference basis for habitat restoration and selection of wildlife environments for M. laxiflora.
Project description:Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome were measured to reveal the mechanisms by which Se reduces the inhibition and toxicity of Cd in B. juncea. The results showed that Se alleviated the inhibitive Cd effects on seedling biomass, root length, and chlorophyll, and promoted the adsorption of Cd by pectin and lignin in the root cell wall (CW). Se also alleviated the oxidative stress induced by Cd, and reduced the content of MDA in cells. As a result, SeCys and SeMet alleviated the transport of Cd to the shoots. Transcriptome data showed that the bivalent cation transporter MPP and ABCC subfamily participated in the separation of Cd in vacuoles, CAL1 was related to the chelation of Cd in the cytoplasm of cells, and ZIP transporter 4 reduced the transport of Cd to the shoots. These results indicated that Se alleviated the damage of Cd in plants and decreased its transport to the shoots by improving the antioxidant system, enhancing the ability of the CW to adsorb Cd, reducing the activity of Cd transporters, and chelating Cd.
Project description:Drought stress is one of the main factors limiting crop production, which provokes a number of changes in plants at physiological, anatomical, biochemical and molecular level. To unravel the various mechanisms underpinning tobacco (Nicotiana tabacum L.) drought stress tolerance, we conducted a comprehensive physiological, anatomical, biochemical and transcriptome analyses of three tobacco cultivars (i.e., HongHuaDaJinYuan (H), NC55 (N) and Yun Yan-100 (Y)) seedlings that had been exposed to drought stress. As a result, H maintained higher growth in term of less reduction in plant fresh weight, dry weight and chlorophyll content as compared with N and Y. Anatomical studies unveiled that drought stress had little effect on H by maintaining proper leaf anatomy while there were significant changes in the leaf anatomy of N and Y. Similarly, H among the three varieties was the least affected variety under drought stress, with more proline content accumulation and a powerful antioxidant defense system, which mitigates the negative impacts of reactive oxygen species. The transcriptomic analysis showed that the differential genes expression between HongHuaDaJinYuan, NC55 and Yun Yan-100 were enriched in the functions of plant hormone signal transduction, starch and sucrose metabolism, and arginine and proline metabolism. Compared to N and Y, the differentially expressed genes of H displayed enhanced expression in the corresponding pathways under drought stress. Together, our findings offer insights that H was more tolerant than the other two varieties, as evidenced at physiological, biochemical, anatomical and molecular level. These findings can help us to enhance our understanding of the molecular mechanisms through the networks of various metabolic pathways mediating drought stress adaptation in tobacco.
Project description:Phytohormones play pivotal roles in the response of plants to various biotic and abiotic stresses. Boron (B) is an essential microelement for plants, and Brassica napus (B. napus) is hypersensitive to B deficiency. However, how auxin responds to B deficiency remained a dilemma for many years and little is known about how other phytohormones respond to B deficiency. The identification of B-efficient/inefficient B. napus indicates that breeding might overcome these constraints in the agriculture production. Here, we seek to identify phytohormone-related processes underlying B-deficiency tolerance in B. napus at the physiological and gene expression levels. Our study indicated low-B reduced indole-3-acetic acid (IAA) concentration in both the shoots and roots of B. napus, and affected the expression of the auxin biosynthesis gene BnNIT1 and the efflux gene BnPIN1 in a time-dependent manner. Low-B increased the jasmonates (JAs) and abscisic acid (ABA) concentrations and induced the expression of the ABA biosynthesis gene BnNCED3 and the ABA sensor gene BnPYL4 in the shoot. In two contrasting genotypes, the auxin concentration decreased more drastically in the B-inefficient genotype 'W10,' and together the expression of BnNIT1 and BnPIN1 also decreased more significantly in 'W10' under long-term B deficiency. While the JAs concentration was considerably higher in this genotype, and the ABA concentration was induced in 'W10' compared with the B-efficient genotype 'QY10.' Digital gene expression (DGE) profiling confirmed the differential expression of the phytohormone-related genes, indicating more other phyohormone differences involving in gene regulation between 'QY10' and 'W10' under low-B stress. Additionally, the activity of DR5:GFP was reduced in the root under low-B in Arabidopsis, and the application of exogenous IAA could partly restore the B-defective phenotype in 'W10.' Overall, our data suggested that low-B disturbed phytohormone homeostasis in B. napus, which originated from the change of transcriptional regulation of phytohormones-related genes, and the differences between genotypes may partly account for their difference in tolerance (B-efficiency) to low-B.
Project description:Low temperature is one of the key environmental stresses that impair plant growth and significantly restricts the productivity and spatial distribution of crop plants. Gossypium thurberi, a wild diploid cotton species, has adapted to a wide range of temperatures and exhibits a better tolerance to chilling stress. Here, we compared phenotypes and physiochemical changes in G. thurberi under cold stress and found this species indeed showed better cold tolerance. Therefore, to understand the molecular mechanisms of the cold tolerance in G. thurberi, we compared transcription changes in leaves of G. thurberi under cold stress by high-throughput transcriptome sequencing. In total, 35 617 unigenes were identified in the whole-genome transcription profile, and 4226 differentially expressed genes (DEGs) were discovered in the leaves upon cold treatment. Gene Ontology (GO) classification analyses showed that the majority of DEGs belonged to categories of signal transduction, transcription factors (TFs) and carbohydrate transport and metabolism. The expression of several cold-responsive genes such as ICE1, CBF4, RAP2-7 and abscisic acid (ABA) biosynthesis genes involved in different signalling pathways were induced after G. thurberi seedlings were exposed to cold stress. Furthermore, cold sensitivity was increased in CBF4 and ICE2 virus-induced gene silencing (VIGS) plants, and high level of malondialdehyde (MDA) showed that the CBF4 and ICE2 silenced plants were under oxidative stress compared to their wild types, which relatively had higher levels of antioxidant enzyme activity, as evident by high levels of proline and superoxide dismutase (SOD) content. In conclusion, our findings reveal a new regulatory network of cold stress response in G. thurberi and broaden our understanding of the cold tolerance mechanism in cotton, which might accelerate functional genomics studies and genetic improvement for cold stress tolerance in cultivated cotton.
Project description:Sugar maple (Acer saccharum Marshall) is a temperate tree species in the northeastern parts of the United States and is economically important for its hardwood and syrup production. Sugar maple trees are highly vulnerable to changing climatic conditions, especially drought, so understanding the physiological, biochemical, and molecular responses is critical. The sugar maple saplings were subjected to drought stress for 7, 14, and 21 days and physiological data collected at 7, 14, and 21 days after stress (DAS) showed significantly reduced chlorophyll and Normalized Difference Vegetation Index with increasing drought stress time. The drought stress-induced biochemical changes revealed a higher accumulation of malondialdehyde, proline, and peroxidase activity in response to drought stress. Transcriptome analysis identified a total of 14,099 differentially expressed genes (DEGs); 328 were common among all stress periods. Among the DEGs, transcription factors (including NAC, HSF, ZFPs, GRFs, and ERF), chloroplast-related and stress-responsive genes such as peroxidases, membrane transporters, kinases, and protein detoxifiers were predominant. GO enrichment and KEGG pathway analysis revealed significantly enriched processes related to protein phosphorylation, transmembrane transport, nucleic acids, and metabolic, secondary metabolite biosynthesis pathways, circadian rhythm-plant, and carotenoid biosynthesis in response to drought stress. Time-series transcriptomic analysis revealed changes in gene regulation patterns in eight different clusters, and pathway analysis by individual clusters revealed a hub of stress-responsive pathways. In addition, qRT-PCR validation of selected DEGs revealed that the expression patterns were consistent with transcriptome analysis. The results from this study provide insights into the dynamics of physiological, biochemical, and gene responses to progressive drought stress and reveal the important stress-adaptive mechanisms of sugar maple saplings in response to drought stress.
Project description:Rapid industrialization and urbanization have caused serious cadmium (Cd) pollution in soil. Tartary buckwheat is an important pseudocereal crop with the potential ability to tolerate various stresses. However, the responses to Cd stress in this species are unclear. In this study, we assessed the phenotypic, cytological, physiological, and transcriptomic characteristics of Tartary buckwheat under the various concentrations of Cd treatments to investigate the responses and their regulatory pathways for the first time. The results showed Tartary buckwheat could tolerate the high Cd concentration of 50 mg/L under Cd stress. The average root diameters increased as a result of more cell layers of the endodermis and the bigger size of the pericycle. Cd primarily accumulated in roots and relatively less transferred to leaves. Antioxidant activities and malondialdehyde (MDA) accumulation varied in different tissues and different Cd concentrations of treatments. Meanwhile, Cd stress led to the formation of Casparian strips in roots and damaged the cytoderm and organelles. The weighted gene co-expression and interaction network analyses revealed that 9 core genes induced by Cd stress were involved in metal ion binding, Ca signal transduction, cell wall organization, antioxidant activities, carbohydrate metabolic process, DNA catabolic process, and plant senescence, which regulated a series of phenotypic, cytological, and physiological changes above. These results laid the foundation for a deep understanding of the responses to Cd toxicity in Tartary buckwheat. It's also a critical reference for the functional characterization of genes for Cd tolerance.
Project description:Broomcorn millet (Panicum miliaceum L.) has great potential in Cd phytoextraction, but its mechanisms are largely unknown. Two contrasting broomcorn millet varieties, 'Ningmi6' (Cd-sensitive variety) and '4452' (Cd-tolerant variety), were investigated through morphological, physiological, and transcriptomic analyses to determine the factors responsible for their differential Cd tolerance and translocation. The Cd-tolerant variety can accumulate more Cd, and its cell wall and vacuole component Cd proportions were higher compared with the Cd-sensitive variety. Under Cd stress, the glutathione content and peroxidase activity of the Cd-tolerant variety were significantly higher than those of the Cd-sensitive variety. Additionally, weighted gene co-expression network analysis (WGCNA) revealed hub modules that were associated with Cd stress and/or variety. Notably, genes involved in these hub modules were significantly enriched for roles in glutathione metabolism, phenylpropanoid biosynthesis, ABC transport, and metal ion transport process. These results suggested that regulation of genes associated with cell wall precipitation and vacuole compartmentalization may increase Cd tolerance and reduce Cd translocation in the Cd-tolerant variety, although it can absorb more Cd. This study provides a foundation for exploring molecular mechanisms of Cd tolerance and transport in broomcorn millet and new insights into improving Cd phytoremediation with this crop through genetic engineering.
Project description:Purpose:Comparative cellular and transcriptome analyses was applied to characterize gene expression during male gametophytic development in Brassica carinata. Methods: floral buds (contain two developmental progress,1.1-1.6 mm and 1.8-6.5 long floral buds) were collected, then Separated male organs were kept in liquid nitrogen immediately until use. Total RNA was extracted using the TRIzol reagent (Invitrogen, Waltham, MA, USA). DNase (Promega, USA) was used to remove potential DNA contamination. For the quantitative real-time polymerase chain reaction (qRT-PCR) analysis Results: In this study, Up-regulated expression of DNA methylation probably affected pollen abortion in synthetic allohaploid B. carinata,and Down-regulated expression of cytokinin may affect pollen division and growth in synthetic allohaploid B. carinata Conclusions: Genes were shown male-preferred implies the dynamic changes of DNA methylation during the development of male gametes. The DEGs, related to CK signaling pathway and BR synthesis pathway were highly enriched in developmental male gametes, suggesting that CK played pivotal roles in male gamete development.