Project description:Keel bone damage (KBD) can be found in all commercial laying hen flocks with a wide range of 23% to 69% of hens/flock found to be affected in this study. As KBD may be linked with chronic pain and a decrease in mobility, it is a serious welfare problem. An automatic assessment system at the slaughter line could support the detection of KBD and would have the advantage of being standardized and fast scoring including high sample sizes. A 2MP stereo camera combined with an IDS imaging color camera was used for the automatic assessment. A trained human assessor visually scored KBD in defeathered hens during the slaughter process and compared results with further human assessors and automatic recording. In a first step, an algorithm was developed on the basis of assessments of keel status of 2287 hens of different genetics with varying degrees of KBD. In two optimization steps, performance data were calculated, and flock prevalences were determined, which were compared between the assessor and the automatic system. The proposed technique finally reached a sensitivity of 0.95, specificity of 0.77, accuracy of 0.86 and precision of 0.81. In the last optimization step, the automatic system scored on average about 10.5% points lower KBD prevalences than the human assessor. However, a proposed change of scoring system (setting the limit for KBD at 0.5 cm deviation from the straight line) would lower this deviation. We conclude that the developed automatic scoring technique is a reliable and potentially valuable tool for the assessment of KBD.
Project description:Keel bone damage is an important animal welfare problem in laying hens. Two generations of four layer lines, differing in phylogenetic background and performance level and kept in single cages or floor pens were weighed and scored for keel bone deformities (KBD) during the laying period. KBD, keel bone fractures (KBF) and the bone mineral density (BMD) of the keels were assessed post mortem. For BMD, relationships to laying performance and body growth were estimated. Caged hens showed more deformities, but fewer fractures and a lower BMD of the keel bone than floor-housed hens. White-egg layers had a lower BMD (0.140-0.165 g/cm2) and more KBD than brown-egg layers (0.179-0.184 g/cm2). KBF occurred more often in the high-performing lines than the moderate-performing ones. However, in the high-performing lines, BMD was positively related to total egg number from 18 to 29 weeks of age. The adult body weight derived from fitted growth curves (Gompertz function) had a significant effect (p < 0.001) on keels' BMD. The study contributes to the understanding of predisposing factors for keel bone damage in laying hens. It showed that the growth rate has a rather subordinate effect on keels' BMD, while the BMD itself greatly affects KBD.
Project description:Keel bone fractures and deviations are one of the major welfare and health issues in commercial laying hens. In non-cage housing systems like aviaries, falls and collisions with perches and other parts of the housing system are assumed to be one of the main causes for the high incidence of keel bone damage. The objectives of this study were to investigate the effectiveness of a soft perch material to reduce keel bone fractures and deviations in white (Dekalb White) and brown laying hens (ISA Brown) kept in an aviary system under commercial conditions. In half of 20 pens, all hard, metal perches were covered with a soft polyurethane material. Palpation of 20 hens per pen was conducted at 18, 21, 23, 30, 38, 44 and 64 weeks of age. Production data including egg laying rate, floor eggs, mortality and feed consumption were collected over the whole laying period. Feather condition and body mass was assessed twice per laying period. The results revealed that pens with soft perches had a reduced number of keel bone fractures and deviations. Also, an interaction between hybrid and age indicated that the ISA hybrid had more fractured keel bones and fewer non-damaged keel bones compared with the DW hybrid at 18 weeks of age, a response that was reversed at the end of the experiment. This is the first study providing evidence for the effectiveness of a soft perch material within a commercial setting. Due to its compressible material soft perches are likely to absorb kinetic energy occurring during collisions and increase the spread of pressure on the keel bone during perching, providing a mechanism to reduce keel bone fractures and deviations, respectively. In combination with genetic selection for more resilient bones and new housing design, perch material is a promising tool to reduce keel bone damage in commercial systems.
Project description:The keel bone of commercially kept laying hens is known to be frequently affected by morphologic changes such as fractures and deformations with important implications for animal welfare. To detect morphologic changes, various methods such as palpation, computed tomography, and ultrasound are available, though radiography allows for the greatest level of detail in combination with the most ease of use. To explore the benefits of radiography in providing objective data on keel fractures from the age of 22-61 weeks within a single laying period, the keel bones of 75 Lohmann Brown and 75 Lohmann Selected Leghorns were radiographed every 3 to 5 weeks. Type, location, angulation, dislocation, callus formation, and healing process were assessed descriptively for each lesion. Ninety-nine percent of the animals showed at least one keel bone lesion during the study and 97% of the animals had at least one keel bone fracture. In 77% of the cases, the caudal third of the keel bone was affected. The fracture types were transverse and oblique (88%), comminuted, and butterfly. Further lesions were sclerosis, new bone formation and angulation. For each keel bone, an average of three fractures (3.09 ± 1.80) was detected at the end of the study. The described radiographic protocol for keel bone lesions was suitable for longitudinal, on-site examinations in conscious laying hens. Our results also indicate that keel bone fractures are more frequent than reported in earlier studies. The described radiographic examination protocol can be used to perform comparative studies of palpatory findings, or to assess the clinical significance of different fracture types which require a high level of detail.
Project description:Keel bone fractures (KBF) in commercial poultry production systems are a major welfare problem with possible economic consequences for the poultry industry. Recent investigations suggest that the overall situation may be worsening. Depending on the housing system, fracture prevalences exceeding 80% have been reported from different countries. No specific causes have yet been identified and this has consequently hampered risk factor identification. The objective of the current study was to investigate the prevalence of KBF in Danish layer hens and to identify risk factors in relation to KBF in all major productions systems, including parent stock production. For risk factor identification, production data from the included flocks was used. In total, 4794 birds from 40 flocks were investigated at end-of-lay. All birds were euthanized on farm and underwent inspection and palpation followed by necropsy. All observations were recorded and subsequently analysed using the SAS statistical software package. In flocks from non-caged systems, fracture prevalence in the range 53%-100%, was observed whereas the prevalence in flocks from enriched cages ranged between 50-98%. Furthermore, often multiple fractures (≥4) were observed in individual birds (range 5-81% of the birds with fractures) depending on the flock. The localization of the fractures at the distal end of the keel bone is highly consistent in all flocks (>96%). Macroscopically the fractures varied morphologically from an appearance with an almost total absence of callus, most frequently observed in caged birds, to large callus formations in and around the fracture lines, which was a typical finding in non-caged birds. Despite being housed under cage-free conditions, parent birds had significantly fewer fractures (all flocks were 60 weeks old) per bird, than other birds from cage-free systems. The body weight at end-of-lay had an effect on the risk of having fractures, heavy hens have significantly fewer fractures at end-of-lay. The older the hens were at onset of lay, the lower was the flock prevalence at end-of-lay. Additionally, the daily egg size at onset of lay was of importance for the risk of developing fractures, the production of heavier eggs initially, resulted in higher fracture prevalence at depopulation. The odds ratio of body weight, (+100 g) was 0.97, age at onset of lay (+1 week) was 0.87 and daily egg weight at onset (+1 gram) was 1.03. In conclusion, the study demonstrated a very high prevalence of KBF in hens from all production systems and identified hen size, age at onset of lay and daily egg weight at onset of lay to be major risk factors for development of KBF in the modern laying hen. Further research regarding this is warranted to strengthen the longevity and enhance the welfare of laying hens.
Project description:In commercial flocks of laying hens, keel bone fractures (KBFs) are prevalent and associated with behavioural indicators of pain. However, whether their impact is severe enough to induce a depressive-like state of chronic stress is unknown. As chronic stress downregulates adult hippocampal neurogenesis (AHN) in mammals and birds, we employ this measure as a neural biomarker of subjective welfare state. Radiographs obtained longitudinally from Lohmann Brown laying hens housed in a commercial multi-tier aviary were used to score the severity of naturally-occurring KBFs between the ages of 21-62 weeks. Individual birds' transitions between aviary zones were also recorded. Focal hens with severe KBFs at 3-4 weeks prior to sampling (n?=?15) had lower densities of immature doublecortin-positive (DCX+) multipolar and bipolar neurons in the hippocampal formation than focal hens with minimal fractures (n?=?9). KBF severity scores at this time also negatively predicted DCX+ cell numbers on an individual level, while hens that acquired fractures earlier in their lives had fewer DCX+ neurons in the caudal hippocampal formation. Activity levels 3-4 weeks prior to sampling were not associated with AHN. KBFs thus lead to a negative affective state lasting at least 3-4 weeks, and management steps to reduce their occurrence are likely to have significant welfare benefits.
Project description:A high prevalence of deviations and fractures of the keel bone is a widespread welfare problem in laying hens. The aim of this study was to experimentally investigate this multifactorial problem throughout the laying period and to compare the prevalence and severity in different layer lines and different housing systems. High performing white (WLA) and brown (BLA) pure bred layer lines and low performing white (R11, G11) and brown layer lines (L68) were kept in both single cages and a floor housing system. A total of 97 hens (19 or 20 from each line, respectively) were repeatedly radiographed in the 35th, 51st and 72nd week of age. Fracture prevalence increased with age (p<0.001). The proportion of deviated keel bone area increased only for caged BLA, WLA and R11 hens (p<0.05) and was significantly higher for caged WLA and R11 hens compared to floor-housed WLA and R11 hens in the 72nd week of age (p<0.05). In the 72nd week of age hens in the floor housing system showed significantly more fractures than hens kept in cages (p<0.05). Prevalence of keel bone deviations was significantly higher in the white layer line R11 but significantly lower in the white layer line G11 compared to both brown layer lines and WLA (p<0.05). Brown layers showed significantly more fractures than white layers (p<0.05) in the 51st and 72nd week of age. Within the brown layers there was a significantly lower prevalence of deviations (p<0.05) and fractures (p<0.05) in the low performing (L68) compared to the high performing line (BLA). Our results show a different development of keel bone damage in caged compared to floor-housed hens under experimental conditions. Additionally, they indicate genetic effects on keel bone damage.
Project description:Sternal carina damage (keel bone damage, KBD) is an important welfare concern for laying hen producers and backyard flock owners. Quantitative radiographic measures of KBD severity are helpful for researchers who study causes for this problem and the effects of novel interventions. The objectives of the current retrospective secondary analysis study were to develop and test intraobserver repeatability for a standardized protocol to quantify three categories of radiographic KBD using open-source image analysis software and discrete and continuous variables. The standardized protocol was developed and evaluated using triplicate measurements of 470 keel bone radiographs that had been previously acquired for a prospective study. Intraobserver repeatability was assessed using intra-class correlation coefficient (ICC) and control chart methods. Based on control chart analyses, measures within the acceptable range of intra-observer variation using the standardized protocol were the number of complete cranial fractures (97.02%), incomplete cranial fractures (96.38%), complete caudal fractures (95.32%), incomplete caudal fractures (98.09%), cranial calluses (99.79%), and caudal calluses (98.09%); proportion of deviation (POD) measurements (97.87%); and angle of displacement (AOD) measurements (93.60%). Findings can be used as background to support future research studies on KBD in laying hens.
Project description:Keel bone fractures (KBF) are prevalent in commercial laying hens and are considered one of the greatest welfare concerns in the egg-production industry. While clear associations exist between KBF and animal mobility, suggesting that KBF impair mobility, the effect of mobility on KBF remains unclear. We combined data from three studies that assessed keel bone fracture severity through radiographs and monitored hens' transitions between different zones of a multi-tier aviary system (the three tiers, a littered floor, and a winter garden) the week prior to radiograph. For each hen, we extracted two daily movement behaviours: the vertical distance travelled and the mean number of zones crossed within one transition; and two daily space-use behaviours: the time spent in the top tier and the unevenness of time spent across zones. We used hierarchical Bayesian continuous time dynamic modelling to estimate how a change in a behaviour predicted a later change in keel bone fracture severity, and vice versa. Increased fracture severity did not predict later changes in space-use behaviours, but it did predict changes in movement behaviours. Specifically, increased fracture severity led to decreased vertical travelled distance and a tendency to cross more zones within one transition, suggesting impaired mobility in hens with increased fracture severity. In contrast, we found no evidence that movement or space-use behaviours predict later change in fracture severity, challenging previous literature suggesting that vertical locomotion through jumping and flying may exacerbate keel bone fractures in complex three-dimensional systems due to increased risk of collisions. However, similar efforts accounting for the location of fractures on the keel could unveil the potential influence of movement and space-use behaviours in the formation and change (healing or worsening) of KBF and increase our ability to mitigate their effects.
Project description:Keel bone damage, include deviations and fractures, is common in both white and brown laying hens, regardless of the housing system. Radiography for assessing birds' keel bones is was proposed by previous studies. However, radiographs show only 2 out of 3 dimensions of the dissected keel bones. The current study aimed to (1) investigate the association of radiographic optical density (keel and tibiotarsal) and geometry (keel) with dissected keel bone pathology. Previous studies suggested that keel bone fractures may result from internal pressure exerted by pelvic cavity contents. The current study also aimed to (2) investigate the potential associations between pelvic dimensions and measures of keel bone damage. A sample of 200 laying hens on a commercial farm were radiographed at 16, 29, 42, 55, and 68 weeks, and culled at the end of the laying period (week 74). The birds were examined post-mortem for pelvic dimensions and underwent whole-body radiography, followed by keel and tibiotarsal bone dissection and radiography, and keel bone scoring. The radiographs were used to estimate radiographic optical density (keel and tibiotarsal bone) and keel bone geometry (ratio of keel bone length to mid-depth). The method for on-farm radiography of laying hens, including live bird restraint, positioning for live keel imaging, and post-imaging measurements, was developed, tested, and found to be reproducible. The radiographs (1,116 images of 168 birds) and the respective measurements and post-mortem scores of keel bones are also provided for further development of radiographic metrics relevant to keel bone damage. Some longitudinal radiographic measurements of keel geometry (ratio of length to mid-depth) and optical density (keel and tibiotarsal) showed associations with the damage (deviations/fractures) observed on the dissected keel bones. The associations of keel damage were clearer with the radiographic keel geometry than with keel and tibiotarsal optical density, also clearer for the keel deviations than for keel fractures. The higher radiography ratio of keel length to mid-depth at weeks 42, 55 and 68 of age, the larger deviations size observed on the dissected keels at age of 74 weeks. The higher the tibiotarsal radiographic optical density at week 55 of age, the lower deviations size and fractures count observed on the dissected keels at age of 74 weeks. Pelvic dimensions showed a positive correlation with body weight, but a larger pelvic cavity was associated with increased keel bone damage. These findings lay the foundations for future use of on-farm radiography in identifying appropriate phenotypes for genetic selection for keel bone health.