Project description:Maize sheath rot is a prevalent maize disease in China. From 2020 to 2021, symptomatic samples were collected from the main maize-growing regions of Heilongjiang province. To clarify the population and genetic diversity, as well as the virulence of pathogens responsible for maize sheath rot, a total of 132 Fusarium isolates were obtained and used for follow-up studies. Ten Fusarium species were identified based on morphological characteristics, and phylogenetic analysis was conducted using the TEF-1α gene sequences, including F. verticillioides (50.00%), F. subglutinans (18.94%), the Fusarium incarnatum-equiseti species complex (14.39%), F. temperatum (5.30%), F. acuminatum (3.03%), F. solani (2.27%), F. sporotrichioides (2.27%), F. tricinctum (1.52%), F. asiaticum (1.52%), and F. proliferatum (0.76%). All 10 Fusarium species could produce oval-to-annular lesions on maize sheath, and the lesions were grayish yellow to dark brown in the center and surrounded by a dark gray-to-dark brown halo. Of these, F. tricinctum and F. proliferatum showed significantly higher virulence than the other Fusarium species. In addition, haplotype analysis based on the concatenated sequences of the ITS and TEF-1a genes showed that 99 Fusarium isolates which belonged to the Fusarium fujikuroi species complex-consisting of F. verticillioides isolates, F. subglutinans isolates, F. temperatum isolates, and F. proliferatum isolates-could be grouped into 10 haplotypes, including 5 shared haplotypes (Haps 1, 2, 4, 5, and 6) and 5 private haplotypes (Haps 3, 7, 8, 9, and 10). Furthermore, the F. verticillioides clade in the haplotype network was radial with the center of Hap 2, suggesting that population expansion occurred. This research showed that Fusarium species associated with maize sheath rot in Heilongjiang province are more diverse than previously reported, and this is the first time that F. subglutinans, F. temperatum, F. solani, F. sporotrichioides, F. tricinctum, and F. acuminatum have been confirmed as the causal agents of maize sheath rot in Heilongjiang province.
Project description:BackgroundVascular system is affected by diseases that can seriously damage plant health by inducing browning and death of branches. This study aimed to identify and analyze the pathogenicity of Fusarium spp. isolates obtained from diseased peach branches in several peach-producing areas of China.ResultsWe obtained and confirmed nine Fusarium isolates based on morphological and molecular characteristics. Phylogenetic relationships using a combination of rDNA-internal transcribed spacer (ITS), elongation factor (EF)-1α, and mitochondrial small subunit (mtSSU) gene sequences were analyzed. GJH-Z1, GJH-6, and GJH-1 were identified as F. avenaceum; HYR-Z3, and ZLZT-6 as F. concentricum, HH-2020-G2, and HYTZ-4 as F. solani, GG-2020-1 as F. asiaticum, SYGZ-1 as F. equiseti. Through acupuncture comparison, the pathogenicity of F. equiseti (SYGZ-1) was highest amongst nine strains. Meanwhile, F. concentricum (HYR-Z3 and ZLZT-6), and F. solaini (HYTZ-4) had a higher level of pathogenicity as revealed by impregnation.ConclusionsOur study shed light on the findings that Fusarium spp. can inflict vascular bundle browning of peach plants. Our results will extend the understanding of pathogenic diseases in China's peach industry.
Project description:Strawberry anthracnose, caused by Colletotrichum spp., is a major disease of cultivated strawberry. This study identifies 31 isolates of Colletotrichum spp. which cause strawberry anthracnose in Zhejiang Province and Shanghai City, China. Eleven isolates were identified as C. acutatum, 10 as C. gloeosporioides and 10 as C. fragariae based on morphological characteristics, phylogenetic and sequence analyses. Species-specific polymerase chain reaction (PCR) and enzyme digestion further confirmed the identification of the Colletotrichum spp., demonstrating that these three species are currently the causal agents of strawberry anthracnose in the studied regions. Based on analysis of rDNA internal transcribed spacers (ITS) sequences, sequences of all C. acutatum were identical, and little genetic variability was observed between C. fragariae and C. gloeosporioides. However, the conservative nature of the MvnI specific site from isolates of C. gloeosporioides was confirmed, and this site could be used to differentiate C. gloeosporioides from C. fragariae.
Project description:Here, 12 Fusarium strains, previously described as F. oxysporum f. sp. cepae (Foc), were examined via multi-locus sequencing of calmodulin (cmdA), RNA polymerase II second largest subunit (rpb2), and translation elongation factor 1-alpha (tef1), to verify the taxonomic position of Foc in the newly established epitype of F. oxysporum. The strains in this study were divided into two clades: F. nirenbergiae and Fusarium sp. To further determine the host specifications of the strains, inoculation tests were performed on onion bulbs and Welsh onion seedlings as potential hosts. Four strains (AC145, AP117, Ru-13, and TA) isolated from diseased onions commonly possessed the secreted in xylem (SIX)-3, 5, 7, 9, 10, 12, and 14 genes and were pathogenic and highly aggressive to onion bulbs, whereas all strains except for one strain (AF97) caused significant inhibition of Welsh onion growth. The inoculation test also revealed that the strains harboring the SIX9 gene were highly aggressive to both onion and Welsh onion and the gene was expressed during infection of both onions and Welsh onions, suggesting the important role of the SIX9 gene in pathogenicity. This study provides insights into the evolutionary pathogenicity differentiation of Fusarium strains causing Fusarium basal rot and wilt diseases in Allium species.
Project description:Fungi of the Fusarium oxysporum are widely distributed around the world in all types of soils, and they are all anamorphic species. In order to investigate the relationships and differences among Fusarium spp., 25 Fusarium spp. were isolated from greenhouse melon soils in Liaoning Province, China. With these 25 strains, three positive control Fusarium strains were analyzed using universally primed PCR (UP-PCR). Seventy-three bands appeared after amplification using 6 primers, and 66 of these bands (90.4%) were polymorphic. All strains were clustered into eight groups, though 14 strains of F. oxysporum were clustered into a single group. We concluded that UP-PCR could reveal the genetic relationships and differences among Fusarium strains. Moreover, the UP-PCR results suggested that F. oxysporum is distinguishable from other Fusarium spp. Thus, UP-PCR is a useful method for Fusarium classification. The pathogenicity of 13 strains of F. oxysporum to muskmelon, cucumber and watermelon seedlings was studied by infecting the seedlings with a spore suspension after cutting the root. The results showed that the F. oxysporum strains were pathogenic to all three melon types, although the pathogenicity differed significantly among the 13 strains. In addition, all strains had the greatest pathogenicity toward watermelon. Since the factors affecting pathogenicity vary widely, they should be considered in future studies on Fusarium spp. The results of such studies may then yield an accurate description of the pathogenicity of Fusarium spp.
Project description:Fusarium wilt pathogens represent an ongoing threat to pepper production worldwide. This is the first report providing data on the molecular identification of Fusarium fungi that cause wilt in pepper in the southern regions of Russia. Monitoring of the Fusarium infection on pepper was carried out in 2019-2022 in two economically important regions of this culture production: the Krasnodar Krai and Crimea. Based on a phylogenetic analysis of the translation elongation factor (EF1a) and the internal transcribed spacer (ITS), as well as the macro- and micromorphological characteristics of the fungi, the causative agents of Fusarium wilt have been identified. The causative agents identified as representatives of the Fusarium species composition included: F. clavus, F. solani, F. oxysporum, F. verticillioides, F. commune, F. torulosum, and F. sporotrichioides. Depending on the region, the specifics of biodiversity and the ratio of these species in pathocomplexes were noted. In Crimea, wilting could be attributed to all of the identified species; in the Krasnodar Krai, F. verticillioides and F. clavus were found to contribute to wilting. The pathogenicity test showed that the pathogens of pepper wilting in Russia, in addition to the already known F. oxysporum and F. solani, are the species F. clavus and F. verticillioides. This is the first report on the ability of these species to cause Fusarium wilt in pepper cultures. The obtained data will be of practical value for the development of biological control measures for fungi of the genus Fusarium, which cause pepper wilt in areas of industrial production and seed production. In addition, data on species composition and aggressive isolates will be used in a pepper breeding program for resistance to Fusarium wilt.
Project description:Herbal teas composed of locally occurring plant species have long been used as the primary form of health care in Qingtian County, Zhejiang Province, China. However, large-scale emigration overseas and an aging population threaten the conservation of traditional knowledge of these herbal teas. Traditional knowledge about the plants used for these herbal teas is not well documented in Qingtian, despite their widespread use. The aim of this study was to assess the plant-cultural diversity of plants used as herbal teas, and to point out the prospective value of herbal teas used by Qingtian people. This study was conducted using semi-structured interviews, as well as field and market surveys. Forty-three local informants were interviewed. We recorded plant resources, plant parts used, local names, and medicinal uses. Quantitative ethnobotanical indices, including cognitive salience (CS), frequency of citation (FC), index of informant consensus (Fic) and use value (UV), were calculated to analyze the level of representativeness and relative importance of plants used in herbal teas. One hundred and twenty-nine species belonging to 75 families and 113 genera were reported to be used in herbal tea, with Compositae being the richest family. Whole plants are most commonly used to make herbal teas (66.7%). In this study, informants reported that 92.2% of plant species used in herbal teas are wild. The most utilized herbal preparation form is dry/fresh. Informants reported that herbal teas are used to treat 31 ailments. Our results show that the highest representativeness, based on CS and FC, was recorded for species Actinidia eriantha. Based on UV, the top five most used species are Goodyera schlechtendaliana, Plantago asiatica, Prunella vulgaris, Lophatherum gracile and Leonurus japonicus. The highest Fic was cited for dental medicine. This study helps document the status of current herbal teas in Qingtian. The use value and traditional knowledge of herbal teas have provided basic data for further research focused on bioactivity studies and sustainable utilization of the most important species.
Project description:BackgroundChikungunya is emerging and reemerging word-widely in the past decades. It is non-endemic in Zhejiang Province, Southeast China. Aedes albopictus, one of major vectors of chikungunya, is widely-distribution in Zhejiang, and autochthonous transmission is possible after introducing chikungunya virus.MethodsRetrospectively collected the epidemiological, clinical and genetic data of chikungunya and conducted the descriptive analysis and gene sequence analysis.ResultsFrom 2008 to 2022, 29 chikungunya cases, including 26 overseas imported and 3 local cases, were reported and no cases died of chikungunya. More than half of the imported cases (53.85%) were from Southeast Asia. Seasonal peak of the imported cases was noted between August and September, and 42.31% cases onset in those 2 months. Eight prefecture-level cities and 16 counties reported cases during the study period, with Jinghua (27.59%) and Hangzhou (24.14%) reporting the largest number of cases. The 3 local cases were all reported in Qujiang, Quzhou in 2017. For imported cases, the male-female gender ratio was 2.71:1, 20-30 years old cases (46.15%) and commercial service (42.31%) accounted for the highest proportion. Clinically, fever (100%), fatigue (94.44%), arthralgia (79.17%), headache (71.43%) and erythra (65.22%) were the most common reported symptoms. Eight whole-genome sequences were obtained and belonged to East/Central/South African (ECSA) or Asian genotype.ConclusionsWith the change of immigration policy, the surveillance of chikungunya should be strengthened and the ability of the case discovery and diagnosis should be improved in Zhejiang in the post-COVID-19 era.
Project description:Hemoplasmas belong to Mycoplasmataceae (Mollicutes: Mycoplasmatales) and are able to infect a broad range of mammalian species. We investigated prevalence of hemotropic mycoplasma species in pig farms in the region of Zhejiang by a PCR scheme using universal primers targeting 16S rRNA and RNase P RNA gene (rnpB). Representative positive samples from different farms were selected for sequencing of 16S rRNA and the 219bp rnpB gene fragments for phylogenetic analysis. Sequencing analysis of PCR products from first samples identified a novel hemoplasma species present in several pig farms in the region with highest nucleotide identity of 92% to Candidatus Mycoplasma turicensis. A duplex PCR assay was then designed for differential detection of the novel hemoplasma from Mycoplasma parvum/M. suis in field samples. Of 324 blood samples from clinically healthy pigs, 26.5% was positive for this novel hemoplasma species and 50% positive for M. suis/M. parvum, indicating that the novel hemotropic mycoplasma species were of considerably high prevalence in Zhejiang province, China.
Project description:We report a disease outbreak caused by chikungunya virus in Zhejiang Province, China, in August 2017. Phylogenic analysis indicated that this virus belonged to the Indian Ocean clade of the East/Central/South African genotype and was imported by a traveler returning from Bangladesh.