Project description:Promoting well-being is one of the key targets of the Sustainable Development Goals at the United Nations. Many national and city governments worldwide are incorporating Subjective Well-Being (SWB) indicators into their agenda, to complement traditional objective development and economic metrics. In this study, we introduce the Twitter Sentiment Geographical Index (TSGI), a location-specific expressed sentiment database with SWB implications, derived through deep-learning-based natural language processing techniques applied to 4.3 billion geotagged tweets worldwide since 2019. Our open-source TSGI database represents the most extensive Twitter sentiment resource to date, encompassing multilingual sentiment measurements across 164 countries at the admin-2 (county/city) level and daily frequency. Based on the TSGI database, we have created a web platform allowing researchers to access the sentiment indices of selected regions in the given time period.
Project description:Sentiment analysis is an evolving field of study that employs artificial intelligence techniques to identify the emotions and opinions expressed in a given text. Applying sentiment analysis to study the billions of messages that circulate in popular online social media platforms has raised numerous opportunities for exploring the emotional expressions of their users. In this paper we combine sentiment analysis with natural language processing and topic analysis techniques and conduct two different studies to examine whether engagement in entrepreneurship is associated with more positive emotions expressed on Twitter. In study 1, we investigate three samples with 6.717.308, 13.253.244, and 62.067.509 tweets respectively. We find that entrepreneurs express more positive emotions than non-entrepreneurs for most topics. We also find that social entrepreneurs express more positive emotions, and that serial entrepreneurs express less positive emotions than other entrepreneurs. In study 2, we use 21.491.962 tweets to explore 37.225 job-status changes by individuals who entered or quit entrepreneurship. We find that a job change to entrepreneurship is associated with a shift in the expression of emotions to more positive ones.
Project description:We investigate the relationship between social media, Twitter in particular, and stock market. We provide an in-depth analysis of the Twitter volume and sentiment about the 30 companies in the Dow Jones Industrial Average index, over a period of three years. We focus on Earnings Announcements and show that there is a considerable difference with respect to when the announcements are made: before the market opens or after the market closes. The two different timings of the Earnings Announcements were already investigated in the financial literature, but not yet in the social media. We analyze the differences in terms of the Twitter volumes, cumulative abnormal returns, trade returns, and earnings surprises. We report mixed results. On the one hand, we show that the Twitter sentiment (the collective opinion of the users) on the day of the announcement very well reflects the stock moves on the same day. We demonstrate this by applying the event study methodology, where the polarity of the Earnings Announcements is computed from the Twitter sentiment. Cumulative abnormal returns are high (2-4%) and statistically significant. On the other hand, we find only weak predictive power of the Twitter sentiment one day in advance. It turns out that it is important how to account for the announcements made after the market closes. These after-hours announcements draw high Twitter activity immediately, but volume and price changes in trading are observed only on the next day. On the day before the announcements, the Twitter volume is low, and the sentiment has very weak predictive power. A useful lesson learned is the importance of the proper alignment between the announcements, trading and Twitter data.
Project description:Interdisciplinary research has faced many challenges, including institutional, cultural and practical ones, while it has also been reported as a 'career risk' and even 'career suicide' for researchers pursuing such an education and approach. Yet, the propagation of challenges and risks can easily lead to a feeling of anxiety and disempowerment in researchers, which we think is counterproductive to improving interdisciplinarity in practice. Therefore, in the search of 'bright spots', which are examples of cases in which people have had positive experiences with interdisciplinarity, this study assesses the perceptions of researchers on interdisciplinarity on the social media platform Twitter. The results of this study show researchers' many positive experiences and successes of interdisciplinarity, and, as such, document examples of bright spots. These bright spots can give reason for optimistic thinking, which can potentially have many benefits for researchers' well-being, creativity and innovation, and may also inspire and empower researchers to strive for and pursue interdisciplinarity in the future.
Project description:PurposeCOVID-19-associated mucormycosis (CAM) was a serious public health problem during the second wave of COVID-19 in India. We planned to analyze public perceptions by sentiment analysis of Twitter data regarding CAM.MethodsIn this observational study, the application programming interface (API) provided by the Twitter platform was used for extracting real-time conversations by using keywords related to mucormycosis (colloquially known as "black fungus"), from May 3 to August 29, 2021. Lexicon-based sentiment analysis of the tweets was done using the Vader sentiment analysis tool. To identify the overall sentiment of a user on any given topic, an algorithm to label a user "k" based on their sentiments was used.ResultsA total of 4,01,037 tweets were collected between May 3 and August 29, 2021, and the peak frequency of 1,60,000 tweets was observed from May 17 to May 23, 2021. Positive sentiment tweets constituted a larger share as compared to negative sentiment tweets, with weekly variations. A temporal analysis of the demand for utilities showed that the demand was high in the initial period but decreased with time, which was associated with the availability of resources.ConclusionSentiment analysis using Twitter data revealed that social media platforms are gaining popularity to express one's emotions during the ongoing COVID-19 pandemic. In our study, time-based assessment of tweets showed a reduction over time in the frequency of negative sentiment tweets. The polarization in the retweet network of users, based on sentiment polarity, showed that the users were well connected, highlighting the fact that such issues bond our society rather than segregating it.
Project description:BackgroundSocial media serves as a vast repository of data, offering insights into public perceptions and emotions surrounding significant societal issues. Amid the COVID-19 pandemic, long COVID (formally known as post-COVID-19 condition) has emerged as a chronic health condition, profoundly impacting numerous lives and livelihoods. Given the dynamic nature of long COVID and our evolving understanding of it, effectively capturing people's sentiments and perceptions through social media becomes increasingly crucial. By harnessing the wealth of data available on social platforms, we can better track the evolving narrative surrounding long COVID and the collective efforts to address this pressing issue.ObjectiveThis study aimed to investigate people's perceptions and sentiments around long COVID in Canada, the United States, and Europe, by analyzing English-language tweets from these regions using advanced topic modeling and sentiment analysis techniques. Understanding regional differences in public discourse can inform tailored public health strategies.MethodsWe analyzed long COVID-related tweets from 2021. Contextualized topic modeling was used to capture word meanings in context, providing coherent and semantically meaningful topics. Sentiment analysis was conducted in a zero-shot manner using Llama 2, a large language model, to classify tweets into positive, negative, or neutral sentiments. The results were interpreted in collaboration with public health experts, comparing the timelines of topics discussed across the 3 regions. This dual approach enabled a comprehensive understanding of the public discourse surrounding long COVID. We used metrics such as normalized pointwise mutual information for coherence and topic diversity for diversity to ensure robust topic modeling results.ResultsTopic modeling identified five main topics: (1) long COVID in people including children in the context of vaccination, (2) duration and suffering associated with long COVID, (3) persistent symptoms of long COVID, (4) the need for research on long COVID treatment, and (5) measuring long COVID symptoms. Significant concern was noted across all regions about the duration and suffering associated with long COVID, along with consistent discussions on persistent symptoms and calls for more research and better treatments. In particular, the topic of persistent symptoms was highly prevalent, reflecting ongoing challenges faced by individuals with long COVID. Sentiment analysis showed a mix of positive and negative sentiments, fluctuating with significant events and news related to long COVID.ConclusionsOur study combines natural language processing techniques, including contextualized topic modeling and sentiment analysis, along with domain expert input, to provide detailed insights into public health monitoring and intervention. These findings highlight the importance of tracking public discourse on long COVID to inform public health strategies, address misinformation, and provide support to affected individuals. The use of social media analysis in understanding public health issues is underscored, emphasizing the role of emerging technologies in enhancing public health responses.
Project description:Social media are increasingly reflecting and influencing behavior of other complex systems. In this paper we investigate the relations between a well-known micro-blogging platform Twitter and financial markets. In particular, we consider, in a period of 15 months, the Twitter volume and sentiment about the 30 stock companies that form the Dow Jones Industrial Average (DJIA) index. We find a relatively low Pearson correlation and Granger causality between the corresponding time series over the entire time period. However, we find a significant dependence between the Twitter sentiment and abnormal returns during the peaks of Twitter volume. This is valid not only for the expected Twitter volume peaks (e.g., quarterly announcements), but also for peaks corresponding to less obvious events. We formalize the procedure by adapting the well-known "event study" from economics and finance to the analysis of Twitter data. The procedure allows to automatically identify events as Twitter volume peaks, to compute the prevailing sentiment (positive or negative) expressed in tweets at these peaks, and finally to apply the "event study" methodology to relate them to stock returns. We show that sentiment polarity of Twitter peaks implies the direction of cumulative abnormal returns. The amount of cumulative abnormal returns is relatively low (about 1-2%), but the dependence is statistically significant for several days after the events.
Project description:The Illumina Infinium 27k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 27,000 CpGs in whole blood samples from 540 samples, of which 266 were samples taken from postmenopausal women with ovarian cancer and 274 were from age-matched healthy controls Keywords: DNA methylation
Project description:BackgroundThe objective of the current study is to investigate whether an area-level measure of racial sentiment derived from Twitter data is associated with state-level hate crimes and existing measures of racial prejudice at the individual-level.MethodsWe collected 30,977,757 tweets from June 2015-July 2018 containing at least one keyword pertaining to specific groups (Asians, Arabs, Blacks, Latinos, Whites). We characterized sentiment of each tweet (negative vs all other) and averaged at the state-level. These racial sentiment measures were merged with other measures based on: hate crime data from the FBI Uniform Crime Reporting Program; implicit and explicit racial bias indicators from Project Implicit; and racial attitudes questions from General Social Survey (GSS).ResultsLiving in a state with 10% higher negative sentiment in tweets referencing Blacks was associated with 0.57 times the odds of endorsing a GSS question that Black-White disparities in jobs, income, and housing were due to discrimination (95% CI: 0.40, 0.83); 1.64 times the odds of endorsing the belief that disparities were due to lack to will (95% CI: 0.95, 2.84); higher explicit racial bias (β: 0.11; 95% CI: 0.04, 0.18); and higher implicit racial bias (β: 0.09; 95% CI: 0.04, 0.14). Twitter-expressed racial sentiment was not statistically-significantly associated with incidence of state-level hate crimes against Blacks (IRR: 0.99; 95% CI: 0.52, 1.90), but this analysis was likely underpowered due to rarity of reported hate crimes.ConclusionLeveraging timely data sources for measuring area-level racial sentiment can provide new opportunities for investigating the impact of racial bias on society and health.