Project description:Mountain birch forest covers large areas in Eurasia, and their ecological resilience provides important ecosystem services to human societies. This study describes long-term stand dynamics based on permanent plots in the upper mountain birch belt in SE Norway. We also present forest line changes over a period of 70 years. Inventories were conducted in 1931, 1953, and 2007. Overall, there were small changes from 1931 up to 1953 followed by a marked increase in biomass and dominant height of mountain birch throughout the period from 1953 to 2007. In addition, the biomass of spruce (Picea abies) and the number of plots with spruce present doubled. The high mortality rate of larger birch stems and large recruitment by sprouting since the 1960s reveal recurrent rejuvenation events after the earlier outbreak of the autumnal moth (Epirrita autumnata). Our results demonstrate both a high stem turnover in mountain birch and a great ability to recover after disturbances. This trend is interpreted as regrowth after a moth attack, but also long-term and time-lagged responses due to slightly improved growth conditions. An advance of the mountain birch forest line by 0.71 m year-1 from 1937 to 2007 was documented, resulting in a total reduction of the alpine area by 12%. Most of the changes in the forest line seem to have taken place after 1960. Regarding silviculture methods in mountain birch, a dimension cutting of larger birch trees with a cutting interval of c. 60 years seems to be a sustainable alternative for mimicking natural processes.
Project description:Most of the Earth's surface has now been modified by humans. In many countries, natural and semi-natural ecosystems mostly occur as islands, isolated by land converted for agriculture and a variety of other land-uses. In this fragmented state, long-distance dispersal may be the only option for species to adapt their ranges in response to changing climate. The order of arrival of species may leave a lasting imprint on community assembly. Although mostly studied at and above the species level, such priority effects also apply at the intraspecific level. We suggest that this may be particularly important in subarctic and arctic ecosystems. Mountain birch (Betula pubescens ssp. tortuosa) is characterized by great intraspecific variation. We explored spatio-temporal patterns of the first two mountain birch generations on a homogeneous, early successional glacial outwash plain in SE Iceland that was the recipient of spatially extensive long-distance dispersal ca. 30 years ago. We evaluated the decadal progress of the young population by remeasuring in 2018, tree density and growth form, plant size, and reproductive effort on 30 transects (150 m2) established in 2008 at four sites on the plain and two adjacent sites ca. 10 km away. All measured variables showed positive increases, but contrary to our predictions of converging dynamics among sites, they had significantly diverged. Thus, two of the sites (only 500 m apart) could not be distinguished in 2008, but by 2018, one of them had much faster growth rates than the other, a higher growth form index reflecting more upright tree stature, greater reproductive effort, and much greater second-generation seedling recruitment. We discuss two hypotheses that may explain the diverging dynamics, site-scale environmental heterogeneity, and legacies of intraspecific priority effects.
Project description:The mountain birch [Betula pubescens var. pumila (L.)] forest in the Subarctic is periodically exposed to insect outbreaks, which are expected to intensify due to climate change. To mitigate abiotic and biotic stresses, plants have evolved chemical defenses, including volatile organic compounds (VOCs) and non-volatile specialized compounds (NVSCs). Constitutive and induced production of these compounds, however, are poorly studied in Subarctic populations of mountain birch. Here, we assessed the joint effects of insect herbivory, elevation and season on foliar VOC emissions and NVSC contents of mountain birch. The VOCs were sampled in situ by an enclosure technique and analyzed by gas chromatography-mass spectrometry. NVSCs were analyzed by liquid chromatography-mass spectrometry using an untargeted approach. At low elevation, experimental herbivory by winter moth larvae (Operophtera brumata) increased emissions of monoterpenes and homoterpenes over the 3-week feeding period, and sesquiterpenes and green leaf volatiles at the end of the feeding period. At high elevation, however, herbivory augmented only homoterpene emissions. The more pronounced herbivory effects at low elevation were likely due to higher herbivory intensity. Of the individual compounds, linalool, ocimene, 4,8-dimethylnona-1,3,7-triene, 2-methyl butanenitrile and benzyl nitrile were among the most responsive compounds in herbivory treatments. Herbivory also altered foliar NVSC profiles at both low and high elevations, with the most responsive compounds likely belonging to fatty acyl glycosides and terpene glycosides. Additionally, VOC emissions from non-infested branches were higher at high than low elevation, particularly during the early season, which was mainly driven by phenological differences. The VOC emissions varied substantially over the season, largely reflecting the seasonal variations in temperature and light levels. Our results suggest that if insect herbivory pressure continues to rise in the mountain birch forest with ongoing climate change, it will significantly increase VOC emissions with important consequences for local trophic interactions and climate.
Project description:In declining birches (Betula sp.) from different European stands affected by the "birch leaf-roll disease" (BLRD) a novel virus is identified by means of RNA-Seq virome analysis. The virus represents a new member in the genus Badnavirus, family Caulimoviridae, tentatively named Birch leaf roll-associated virus (BLRaV) and it is the first badnavirus found to infect birch. Complete genome sequences (7,862-7,864 nucleotides) of three viral isolates of Finnish and German origin have been determined. The virus sequences show a typical badnavirus organization with three major open reading frames (ORFs) and a fourth potential ORF overlapping with the end of ORF3. ORFs 1-2-3 show low level of amino acid identity to the corresponding proteins encoded by other badnaviruses, reaching a maximum of 44% identity (ORF3). Grapevine vein-clearing virus appears as the closest badnavirus when considering the polymerase region. So far, we can exclude evidence for presence of endogenous BLRaV elements in the birch genome, while evidence for the episomal activity of BLRaV is provided. The viral population holds significant haplotype diversity, while co-infection by different BLRaV variants are observed in single hosts. BLRaV presence is associated with the BLRD in both silver (B. pendula) and downy birch (B. pubescens). These results challenge the earlier hypothesis of a causal role of Cherry leaf roll virus in BLRD. Further work is now needed to finally prove that BLRaV is the causal agent for the BLRD.
Project description:Plant polyploidization changes its leaf morphology and leaf development patterns. Understanding changes in leaf morphology and development patterns is a prerequisite and key to studying leaf development in polyploid plants. In this study, we quantified and analyzed the differences in leaf morphology, leaf growth polarity, and leaf size between diploid and tetraploid birches (Betula pendula subsp. pendula), and preliminarily investigated genes involved in leaf growth and development in birch. The results showed significant changes in leaf morphology in tetraploid birches, especially the basal part of the leaf. In addition, the proximal growth rate of tetraploid leaves was altered. The changed proximal growth rate did not affect the growth polarity pattern of tetraploid leaves. The leaf area of tetraploid was significantly larger than that of diploid birch. The difference in leaf size was mainly due to differences in their growth rates in the middle and late stages of leaf development. Increased cell expansion capacity was the major reason for the enormous leaves of tetraploid birch; however, cell proliferation did not contribute to the larger tetraploid leaf. The gene expression of ATHB12 was associated with cell size and leaf area, and may be a critical gene affecting the leaf size in diploid and tetraploid birches. The results will provide valuable insights into plant polyploid leaf development and a theoretical basis for later investigations into the molecular mechanisms underlying the gigantism of tetraploid birch leaves.
Project description:The present study investigated the magnitude and mechanism of the cytotoxic effect on selected cancer cell lines of 3,4-seco-urs-4(23),20(30)-dien-3-oic acid (1), 3,4-seco-olean-4(24)-en-19-oxo-3-oic acid (2), and 3,4-seco-urs-4(23),20(30)-dien-19-ol-3-oic acid (3) isolated from downy birch (Betula pubescens) buds by carbon dioxide supercritical fluid extraction and gradient column chromatography. Cell viability in six human cancer lines exposed to these compounds was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was quantified by annexin V/propidium iodide staining of gastric cancer AGS and colorectal cancer DLD-1 cells. To evaluate the mechanism of apoptosis, the expression of apoptosis-related proteins was analyzed by Western blot. Compound 1 exhibited non-specific toxicity, while compounds 2 and 3 were specifically toxic to colon and stomach cancer cells. The toxicity of compounds 2 and 3 against these two cell lines was greater than for compound 1. Cleavage of caspase-8, -9, and -3 was found in AGS and DLD-1 cells treated with all three seco-acids, indicating the induction of apoptosis via extrinsic and intrinsic pathways. Therefore, triterpene seco-acids (1-3) decreased cell viability by apoptosis induction. AGS and DLD-1 cells were more susceptible to seco-acids with an oxidized C19 than normal fibroblasts. Hence, it made them a new group of triterpenes with potential anticancer activity.
Project description:Subarctic vegetation is composed of mountain birch [Betula pubescens ssp. czerepanovii (MB)] forests with shrubs and other species growing in the understorey. The effects of the presence and density of one understorey shrub, Rhododendron tomentosum (RT), on the volatile emissions of MB, were investigated in a Finnish subarctic forest site in early and late growing season. Only MB trees with an RT-understorey emitted the RT-specific sesquiterpenoids, palustrol, ledol and aromadendrene. Myrcene, which is the most abundant RT-monoterpene was also emitted in higher quantities by MB trees with an RT-understorey. The effect of RT understorey density on the recovery of RT compounds from MB branches was evident only during the late season when sampling temperature, as well as RT emissions, were higher. MB sesquiterpene and total emission rates decreased from early season to late season, while monoterpene emission rate increased. Both RT and MB terpenoid emission rates were linked to density of foliar glandular trichomes, which deteriorated over the season on MB leaves and emerged with new leaves in the late season in RT. We show that sesquiterpene and monoterpene compounds emitted by understorey vegetation are adsorbed and re-released by MB, strongly affecting the MB volatile emission profile.
Project description:Background and aimsThe introduction of crassulacean acid metabolism (CAM) into C3 crops has been considered as a means of improving water-use efficiency. In this study, we investigated photosynthetic and leaf structural traits in F1 hybrids between Cymbidium ensifolium (female C3 parent) and C. bicolor subsp. pubescens (male CAM parent) of the Orchidaceae.MethodsSeven F1 hybrids produced through artificial pollination and in vitro culture were grown in a greenhouse with the parent plants. Structural, biochemical and physiological traits involved in CAM in their leaves were investigated.Key resultsCymbidium ensifolium accumulated very low levels of malate without diel fluctuation, whereas C. bicolor subsp. pubescens showed nocturnal accumulation and diurnal consumption of malate. The F1s also accumulated malate at night, but much less than C. bicolor subsp. pubescens. This feature was consistent with low nocturnal fixation of atmospheric CO2 in the F1s. The δ13C values of the F1s were intermediate between those of the parents. Leaf thickness was thicker in C. bicolor subsp. pubescens than in C. ensifolium, and those of the F1s were more similar to that of C. ensifolium. This was due to the difference in mesophyll cell size. The chloroplast coverage of mesophyll cell perimeter adjacent to intercellular air spaces of C. bicolor subsp. pubescens was lower than that of C. ensifolium, and that of the F1s was intermediate between them. Interestingly, one F1 had structural and physiological traits more similar to those of C. bicolor subsp. pubescens than the other F1s. Nevertheless, all F1s contained intermediate levels of phosphoenolpyruvate carboxylase but as much pyruvate, Pi dikinase as C. bicolor subsp. pubescens.ConclusionsCAM traits were intricately inherited in the F1 hybrids, the level of CAM expression varied widely among F1 plants, and the CAM traits examined were not necessarily co-ordinately transmitted to the F1s.
Project description:Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.