Project description:While the amount of electronic waste is increasing worldwide, the heterogeneity of electronic scrap makes the recycling very complicated. Hydrometallurgical methods are currently applied in e-waste recycling which tend to generate complex polymetallic solutions due to dissolution of all metal components. Although biosorption has previously been described as a viable option for metal recovery and removal from low-concentration or single-metal solutions, information about the application of selective metal biosorption from polymetallic solutions is missing. In this study, an environmentally friendly and selective biosorption approach, based on the pH-dependency of metal sorption processes is presented using spent brewer's yeast to efficiently recover metals like aluminum, copper, zinc and nickel out of polymetallic solutions. Therefore, a design of experiment (DoE) approach was used to identify the effects of pH, metal, and biomass concentration, and optimize the biosorption efficiency for each individual metal. After process optimization with single-metal solutions, biosorption experiments with lyophilized waste yeast biomass were performed with synthetic polymetallic solutions where over 50% of aluminum at pH 3.5, over 40% of copper at pH 5.0 and over 70% of zinc at pH 7.5 could be removed. Moreover, more than 50% of copper at pH 3.5 and over 90% of zinc at pH 7.5 were recovered from a real polymetallic waste stream after leaching of printed-circuit boards. The reusability of yeast biomass was confirmed in five consecutive biosorption steps with little loss in metal recovery abilities. This proves that spent brewer's yeast can be sustainably used to selectively recover metals from polymetallic waste streams different to previously reported studies.
Project description:To enable a more sustainable wastewater treatment processes, a transition towards resource recovery methods that have minimal environmental impact while being financially viable is imperative. Phosphorus (P) is a finite resource that is being discharged into the aqueous environment in excessive quantities. As such, understanding the financial and environmental effectiveness of different approaches for removing and recovering P from wastewater streams is important to reduce the overall impact of wastewater treatment. In this study, a process-systems modelling framework for comprehensively evaluating these approaches in terms of both economic and environmental impacts is developed. Applying this framework, treatment pathways are designed, simulated and analysed to determine the most suitable approaches for P removal and recovery. The purpose of this methodology is not only to assist with plant design, but also to identify the principal economic and environmental factors acting as barriers to implementing a given technology, incorporating the impact of waste recovery. The results suggest that the chemical and ion-exchange approaches studied deliver sustainable advantages over biological pathways, both economically and environmentally, with each possessing different strengths. The assessment methodology developed enables a more rational and environmentally sound wastewater plant design approach to be taken.
Project description:The recovery of antioxidant polyphenols from light, dark and mix brewer's spent grain (BSG) using conventional maceration, microwave and ultrasound assisted extraction was investigated. Total polyphenols were measured in the crude (60% acetone), liquor extracts (saponified with 0.75% NaOH) and in their acidified ethyl acetate (EtOAc) partitioned fractions both by spectrophotometry involving Folin-Ciocalteu reagent and liquid-chromatography-tandem mass spectrometry (LC-MS/MS) methods. Irrespective of the extraction methods used, saponification of BSG yielded higher polyphenols than in the crude extracts. The EtOAc fractionations yielded the highest total phenolic content (TPC) ranging from 3.01 ± 0.19 to 4.71 ± 0.28 mg gallic acid equivalent per g of BSG dry weight. The corresponding total polyphenols quantified by LC-MS/MS ranged from 549.9 ± 41.5 to 2741.1 ± 5.2 µg/g of BSG dry weight. Microwave and ultrasound with the parameters and equipment used did not improve the total polyphenol yield when compared to the conventional maceration method. Furthermore, the spectrophotometric quantification of the liquors overestimated the TPC, while the LC-MS/MS quantification gave a closer representation of the total polyphenols in all the extracts. The total polyphenols were in the following order in the EtOAc fractions: BSG light > BSG Mix > BSG dark, and thus suggested BSG light as a sustainable, low cost source of natural antioxidants that may be tapped for applications in food and phytopharmaceutical industries.
Project description:The widespread use of platinum in high-tech and catalytic applications has led to the production of diverse Pt loaded wastewaters. Effective recovery strategies are needed for the treatment of low concentrated waste streams to prevent pollution and to stimulate recovery of this precious resource. The biological recovery of five common environmental Pt-complexes was studied under acidic conditions; the chloro-complexes PtCl42- and PtCl62-, the amine-complex Pt(NH3)4Cl2 and the pharmaceutical complexes cisplatin and carboplatin. Five bacterial species were screened on their platinum recovery potential; the Gram-negative species Shewanella oneidensis MR-1, Cupriavidus metallidurans CH34, Geobacter metallireducens, and Pseudomonas stutzeri, and the Gram-positive species Bacillus toyonensis. Overall, PtCl42- and PtCl62- were completely recovered by all bacterial species while only S. oneidensis and C. metallidurans were able to recover cisplatin quantitatively (99%), all in the presence of H2 as electron donor at pH 2. Carboplatin was only partly recovered (max. 25% at pH 7), whereas no recovery was observed in the case of the Pt-tetraamine complex. Transmission electron microscopy (TEM) revealed the presence of both intra- and extracellular platinum particles. Flow cytometry based microbial viability assessment demonstrated the decrease in number of intact bacterial cells during platinum reduction and indicated C. metallidurans to be the most resistant species. This study showed the effective and complete biological recovery of three common Pt-complexes, and estimated the fate and transport of the Pt-complexes in wastewater treatment plants and the natural environment.
Project description:Carbon cycle regulation and greenhouse gas (GHG) emission abatement within wastewater treatment plants (WWTPs) can theoretically improve sustainability. Currently, however, large amounts of external carbon sources used for deep nitrogen removal and waste sludge disposal aggravate the carbon footprint of most WWTPs. In this pilot-scale study, considerable carbon was preliminarily recovered from primary sludge (PS) through short-term (five days) acidogenic fermentation and subsequently utilized on-site for denitrification in a wool processing industrial WWTP. The recovered sludge-derived carbon sources were excellent electron donors that could be used as additional carbon supplements for commercial glucose to enhance denitrification. Additionally, improvements in carbon and nitrogen flow further contributed to GHG emission abatement. Overall, a 9.1% reduction in sludge volatile solids was achieved from carbon recovery, which offset 57.4% of external carbon sources, and the indirect GHG emissions of the target industrial WWTP were reduced by 8.05%. This study demonstrates that optimizing the allocation of carbon mass flow within a WWTP has numerous benefits.
Project description:Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The "Candidatus Accumulibacter" PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.
Project description:We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4', 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m(-3) d(-1) and hydraulic retention times of 8-24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded at low numbers. However, it is unknown as yet if these were responsible for the luxury polyP uptake observed in this system. The possibility of efficient phosphate removal and recovery from wastewater during AD would represent a major advance in the scope for widespread application of anaerobic wastewater treatment technologies.
Project description:Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Project description:The genome of lager brewer's yeast is a hybrid, with Saccharomyces eubayanus and Saccharomyces cerevisiae as sub-genomes. Due to their specific use in the beer industry, relatively little information is available. The genome of brewing yeast was sequenced and annotated in this study. We obtained a genome size of 22.7 Mbp that consisted of 133 scaffolds, with 65 scaffolds larger than 10 kbp. With respect to the annotation, 9939 genes were obtained, and when they were submitted to a local alignment, we found that 53.93% of these genes corresponded to S. cerevisiae, while another 42.86% originated from S. eubayanus. Our results confirm that our strain is a hybrid of at least two different genomes.
Project description:Given the significance of dissolved H2S, various techniques have been explored in the literature. The current review describes in detail the various membrane-based techniques, such as membrane contactors, for removing dissolved H2S from various wastewater streams. Various types of hydrophobic membranes have been used, with more emphasis placed on PVDF hollow fiber membranes. The hydrophobic membranes do not allow water to pass through, whereas H2S is readily allowed to pass through the membrane at ambient conditions. In addition, the use of monoethanol amine triazine (MEA-Triazine)- based H2S scavengers has also been described in detail, including the possible scavenging mechanism. The possibility of different types of byproducts has also been explained along with the possible routes to get rid of scavenger byproducts, such as apDTZ. The use of peroxy acetic acid has also been explained to oxidize and solubilize apDTZ. Furthermore, the use of vacuum-based dissolved H2S gas has also been described in detail. The application of the Knudsen and bulk diffusion models to the separation of dissolved H2S through the pores of the hollow fibers has also been explained. Finally, the future challenges and possible solutions along with concluding remarks have also been mentioned in the current review.