Project description:BackgroundThere are limited data regarding the quality of patient-reported outcome (PRO) data in immune checkpoint inhibitor (ICI) clinical trial publications.MethodsA systematic search of citations from various databases was conducted to identify prospective clinical trials involving ICI in advanced tumors from 2003 to 2020. A 30-point score was adapted from the CONSORT PRO extension statement to assess adherence to CONSORT PRO reporting. Linear regression was used to identify factors associated with quality reporting.ResultsAfter the review of 8058 articles, 33 trials were included with ICIs as either monotherapy (91%) or part of a combination regimen (9%). The median score was 23.5 points (range 15-29). In the majority of cases (82%), PROs were reported in a separate publication from the original study. Most of the trials were conducted in the metastatic setting and predominantly in melanoma, lung, and renal cell carcinoma (RCC) (73%). Univariate analysis revealed that trials with greater than 250 patients were associated with a higher score. The score was more likely to be lower in disease sites other than melanoma, lung, and RCC and was higher in the KEYNOTE than in the CHECKMATE trial series. There was no significant correlation between the score and whether a trial met its primary end-point or if the trial improved or worsened the quality of life. In the multivariate analysis, the number of patients enrolled to the trial, disease site, and trial series remained significant.ConclusionsThe quality of reporting of PROs in ICI phase II and III clinical trials is heterogeneous across various cancer sites. As PRO data are increasingly used to counsel patients and complement clinical decision making, innovative and collaborative efforts are required to improve the reporting of these essential data.
Project description:BackgroundNot all lung adenocarcinoma (LUAD) patients with activating epidermal growth factor receptor (EGFR) mutations respond to tyrosine kinase inhibitors (TKIs) as intended. Thus, biomarkers are needed to identify patients who benefit most from EGFR-targeted therapy. Our previous in vitro data has shown that the co-signal molecule B7-H3 determines EGFR-TKI gefitinib susceptibility of EGFR-mutated LUAD cell lines, based on the potential crosslinking between B7-H3-induced signaling and EGFR signaling.MethodsWe detected tumoral B7-H3 expression in the original biopsy from 56 treatment-naïve LUAD patients and analyzed the association between high/low B7-H3 expression with the clinical outcomes of first-line anti-EGFR therapy. The main criteria for the analysis of response were overall response rate (ORR), disease control rate (DCR), and progression-free survival (PFS), and the secondary criterion was overall survival (OS).ResultsIn the subgroups of B7-H3 high and low expression, the ORR were 16.0% (4/25) and 74.2% (23/31) (p<0.001), and the DCR were 36.0% (9/25) and 87.1% (27/31) (p<0.001), respectively. The PFS of B7-H3 high [median 8.7, 95% confidence interval (CI) 4.0-13.4] was significantly worse than that of B7-H3 low (median not reached) [HR 6.54 (95% CI 2.18-19.60), p=0.001]. The median OS was 15.9 (95% CI 10.0-21.8) months in the B7-H3 high cohort and 25.7 (95% CI 9.0-42.4) months in the B7-H3 low subjects [HR 2.08 (95% CI 1.07-4.02), p=0.03], respectively. Both the univariate and multivariate analyses identified B7-H3 as an independent factor associated with poor PFS (p=0.001, p=0.000) and OS (p=0.03, p=0.015).ConclusionB7-H3 may serve as a potential biomarker to predict clinical outcomes in EGFR-mutated LUAD patients treated with first-line EGFR-TKIs.
Project description:BackgroundB7 molecules play significant roles in regulating tumor immunity, but their expression patterns and immuno-biological correlations in pancreatic cancer (PaCa) have not been fully discussed.MethodsRNA-sequencing data of B7 molecules of PaCa samples in the Cancer Genome Atlas (TCGA) dataset was downloaded from the UCSC Xena to assess the expression, correlation, and mutation of the B7 family in PaCa. Next, two PaCa tissue microarrays (TMAs, Cat. HPanA150CS02 and HPanA120Su02) were obtained from Outdo BioTech (Shanghai, China). To detect the expression levels of PD-L1, B7-H3 and B7-H4, immunohistochemistry (IHC) staining was performed on these TMAs.ResultsMost B7 molecules, including B7-1, B7-2, PD-L1, B7-DC, B7-H2, and B7-H5 exhibited similar expression patterns, but B7-H3, B7-H4, B7-H6, and B7-H7 showed outlier expression patterns compared with other B7 molecules. Besides, B7 molecules were genetically stable and exhibited low alteration frequency. IHC staining indicated PD-L1, B7-H3, and B7-H4 were up-regulated in PaCa tissues and showed uncorrelated expression patterns. Furthermore, high expression of PD-L1 and B7-H3 indicated poor-differentiated grades in PaCa. PD-L1 was positively, but B7-H4 was negatively correlated with CD8+ TILs infiltration in PaCa. Moreover, combined PD-L1 and B7-H4 expression was a novel subtyping strategy in PaCa, namely patients with both high PD-L1 and B7-H4 expression exhibited decreased CD8+ TILs infiltration in tumor tissues.ConclusionOverall, we systemically analyzed the expression patterns of B7 molecules and proposed a novel subtyping strategy in PaCa. Patients with both high PD-L1 and B7-H4 expression exhibited the immuno-cold phenotype, which may be not suitable for immunotherapy.
Project description:BackgroundClinical outcome assessments (COAs) are key to patient-centered evaluation of novel interventions and supportive care. COAs are particularly informative in oncology where a focus on how patients feel and function is paramount, but their incorporation in trial outcomes have lagged that of traditional survival and tumor responses. To understand the trends of COA use in oncology and the impact of landmark efforts to promote COA use, we computationally surveyed oncology clinical trials in ClinicalTrials.gov comparing them to the rest of the clinical research landscape.MethodsOncology trials were identified using medical subject heading neoplasm terms. Trials were searched for COA instrument names obtained from PROQOLID. Regression analyses assessed chronological and design-related trends.ResultsEighteen percent of oncology interventional trials initiated 1985-2020 (N = 35,415) reported using one or more of 655 COA instruments. Eighty-four percent of the COA-using trials utilized patient-reported outcomes, with other COA categories used in 4-27% of these trials. Likelihood of COA use increased with progressing trial phase (OR = 1.30, p < 0.001), randomization (OR = 2.32, p < 0.001), use of data monitoring committees (OR = 1.26, p < 0.001), study of non-FDA-regulated interventions (OR = 1.23, p = 0.001), and in supportive care versus treatment-focused trials (OR = 2.94, p < 0.001). Twenty-six percent of non-oncology trials initiated 1985-2020 (N = 244,440) reported COA use; they had similar COA-use predictive factors as oncology trials. COA use increased linearly over time (R = 0.98, p < 0.001), with significant increases following several individual regulatory events.ConclusionWhile COA use across clinical research has increased over time, there remains a need to further promote COA use particularly in early phase and treatment-focused oncology trials.
Project description:Activating mutations of the BRAF oncogene are present in approximately 5-10% of all human malignancies and lead to constitutive activation of the mitogen activated protein kinase (MAPK) pathway. The introduction of BRAF inhibitors has greatly improved the short term prospects of some patients with these tumors, but the tumors tend to become resistant to therapy with time by activating alternative signaling pathways. Consequently, combination strategies with drugs that block not only the primary mutated BRAF kinase but also the alternative pathways implicated in development of resistance may represent a better strategy for improving survival in patients with tumors harboring BRAF mutations.
Project description:Immunotherapy for cancer is a rapidly developing treatment that modifies the immune system and enhances the antitumor immune response. B7-H3 (CD276), a member of the B7 family that plays an immunoregulatory role in the T cell response, has been highlighted as a novel potential target for cancer immunotherapy. B7-H3 has been shown to play an inhibitory role in T cell activation and proliferation, participate in tumor immune evasion and influence both the immune response and tumor behavior through different signaling pathways. B7-H3 expression has been found to be aberrantly upregulated in many different cancer types, and an association between B7-H3 expression and poor prognosis has been established. Immunotherapy targeting B7-H3 through different approaches has been developing rapidly, and many ongoing clinical trials are exploring the safety and efficacy profiles of these therapies in cancer. In this review, we summarize the emerging research on the function and underlying pathways of B7-H3, the expression and roles of B7-H3 in different cancer types, and the advances in B7-H3-targeted therapy. Considering different tumor microenvironment characteristics and results from preclinical models to clinical practice, the research indicates that B7-H3 is a promising target for future immunotherapy, which might eventually contribute to an improvement in cancer immunotherapy that will benefit patients.
Project description:Novel clinical trial designs are conducted in the precision medicine era. This study aimed to evaluate biomarker-driven, adaptive phase II trials in precision oncology, focusing on infrastructure, efficacy, and safety. We systematically reviewed and analyzed the target studies. EMBASE and PubMed searches from 2015 to 2023 generated 29 eligible trials. Data extraction included infrastructure, biomarker screening methodologies, efficacy, and safety profiles. Government agencies, cancer hospitals, and academic societies with accumulated experiences led investigator-initiated precision oncology clinical trials (IIPOCTs), which later guided sponsor-initiated precision oncology clinical trials (SIPOCTs). Most SIPOCTs were international studies with basket design. IIPOCTs primarily used the central laboratory for biomarker screening, but SIPOCTs used both central and local laboratories. Most of the studies adapted next-generation sequencing and/or immunohistochemistry for biomarker screening. Fifteen studies included an independent central review committee for outcome investigation. Efficacy assessments predominantly featured objective response rate as the primary endpoint, with varying results. Nine eligible studies contributed to the United States Food and Drug Administration's marketing authorization. Safety monitoring was rigorous, but reporting formats lacked uniformity. Health-related quality of life and patient-reported outcomes were described in some protocols but rarely reported. Our results reveal that precision oncology trials with adaptive design rapidly and efficiently evaluate anticancer drugs' efficacy and safety, particularly in specified biomarker-driven cohorts. The evolution from IIPOCT to SIPOCT has facilitated fast regulatory approval, providing valuable insights into the precision oncology landscape.
Project description:T cell activity is controlled by a combination of antigen-dependent signaling through the T cell receptor and a set of auxiliary signals delivered through antigen-independent interactions, including the recognition of the B7 family of ligands. B7-H3 is a recently identified B7 family member that is strongly overexpressed in a range of cancers and correlates with poor prognosis. We report the crystal structure of murine B7-H3 at a 3 Å resolution, which provides a model for the organization of the IgV and IgC domains within the ectodomain. We demonstrate that B7-H3 inhibits T cell proliferation and show that the FG loop of the IgV domain plays a critical role in this function. B7-H3 crystallized as an unusual dimer arising from the exchange of the G strands in the IgV domains of partner molecules. This arrangement, in combination with previous reports, highlights the dynamic nature and plasticity of the immunoglobulin fold.
Project description:B7-H3 belongs to the B7 superfamily, a group of molecules that costimulate or down-modulate T-cell responses. Although it was shown that B7-H3 could inhibit T-cell responses, several studies - most of them performed in murine systems - found B7-H3 to act in a costimulatory manner. In this study, we have specifically addressed a potential functional dualism of human B7-H3 by assessing the effect of this molecule under varying experimental conditions as well as on different T-cell subsets. We show that B7-H3 does not costimulate human T cells. In the presence of strong activating signals, B7-H3 potently and consistently down-modulated human T-cell responses. This inhibitory effect was evident when analysing proliferation and cytokine production and affected naïve as well as pre-activated T cells. Furthermore, we demonstrate that B7-H3-T-cell interaction is characterised by an early suppression of IL-2 and that T-cell inhibition can be reverted by exogenous IL-2. Since the triggering receptor expressed on myeloid cells like transcript 2 (TREML2/TLT-2) has been recently described as costimulatory receptor of murine B7-H3 we have extensively analysed interaction of human B7-H3 with TREML2/TLT-2. In these experiments we found no evidence for such an interaction. Furthermore, our data do not point to a role for murine TREML2 as a receptor for murine B7-H3.
Project description:BackgroundThe B7-H3 protein, encoded by the CD276 gene, is a member of the B7 family of proteins and a transmembrane glycoprotein. It is highly expressed in various solid tumors, such as lung and breast cancer, and has been associated with limited expression in normal tissues and poor clinical outcomes across different malignancies. Additionally, B7-H3 plays a crucial role in anticancer immune responses. Antibody-drug conjugates (ADCs) are a promising therapeutic modality, utilizing antibodies targeting tumor antigens to selectively and effectively deliver potent cytotoxic agents to tumors.MethodsIn this study, we demonstrate the potential of a novel B7-H3-targeting ADC, ITC-6102RO, for B7-H3-targeted therapy. ITC-6102RO was developed and conjugated with dHBD, a soluble derivative of pyrrolobenzodiazepine (PBD), using Ortho Hydroxy-Protected Aryl Sulfate (OHPAS) linkers with high biostability. We assessed the cytotoxicity and internalization of ITC-6102RO in B7-H3 overexpressing cell lines in vitro and evaluated its anticancer efficacy and mode of action in B7-H3 overexpressing cell-derived and patient-derived xenograft models in vivo.ResultsITC-6102RO inhibited cell viability in B7-H3-positive lung and breast cancer cell lines, inducing cell cycle arrest in the S phase, DNA damage, and apoptosis in vitro. The binding activity and selectivity of ITC-6102RO with B7-H3 were comparable to those of the unconjugated anti-B7-H3 antibody. Furthermore, ITC-6102RO proved effective in B7-H3-positive JIMT-1 subcutaneously xenografted mice and exhibited a potent antitumor effect on B7-H3-positive lung cancer patient-derived xenograft (PDX) models. The mode of action, including S phase arrest and DNA damage induced by dHBD, was confirmed in JIMT-1 tumor tissues.ConclusionsOur preclinical data indicate that ITC-6102RO is a promising therapeutic agent for B7-H3-targeted therapy. Moreover, we anticipate that OHPAS linkers will serve as a valuable platform for developing novel ADCs targeting a wide range of targets.