Project description:The universe abounds with solid helium in polymorphic forms. Therefore, exploring the allotropes of helium remains vital to our understanding of nature. However, it is challenging to produce, observe and utilize solid helium on the earth because high-pressure techniques are required to solidify helium. Here we report the discovery of room-temperature two-dimensional solid helium through the diamond lattice confinement effect. Controllable ion implantation enables the self-assembly of monolayer helium atoms between {100} diamond lattice planes. Using state-of-the-art integrated differential phase contrast microscopy, we decipher the buckled tetragonal arrangement of solid helium monolayers with an anisotropic nature compressed by the robust diamond lattice. These distinctive helium monolayers, in turn, produce substantial compressive strains to the surrounded diamond lattice, resulting in a large-scale bandgap narrowing up to ~2.2 electron volts. This approach opens up new avenues for steerable manipulation of solid helium for achieving intrinsic strain doping with profound applications.
Project description:When protein crystals are abruptly cooled, the unit-cell, protein and solvent-cavity volumes all contract, but the volume of bulk-like internal solvent may expand. Outflow of this solvent from the unit cell and its accumulation in defective interior crystal regions has been suggested as one cause of the large increase in crystal mosaicity on cooling. It is shown that when apoferritin crystals are abruptly cooled to temperatures between 220 and 260 K, the unit cell contracts, solvent is pushed out and the mosaicity grows. On temperature-dependent timescales of 10 to 200 s, the unit-cell and solvent-cavity volume then expand, solvent flows back in, and the mosaicity and B factor both drop. Expansion and reordering at fixed low temperature are associated with small-amplitude but large-scale changes in the conformation and packing of apoferritin. These results demonstrate that increases in mosaicity on cooling arise due to solvent flows out of or into the unit cell and to incomplete, arrested relaxation of protein conformation. They indicate a critical role for time in variable-temperature crystallographic studies, and the feasibility of probing interactions and cooperative conformational changes that underlie cold denaturation in the presence of liquid solvent at temperatures down to ∼200 K.
Project description:In the literature, it is reported that eutectics lead to the enhanced dissolution of a poorly soluble compound. However, the solubility theory suggests that since crystal structures of two components are unchanged that all else being equal, the dissolution rates of a fused mixture (FM) should be the same as a physical mixture (PM). The influence of crystal lattice energy on dissolution profiles was investigated using the PM and FM. Experimental phase diagrams constructed using differential scanning calorimetry data were compared with those theoretically derived. Deviation of the experimental phase diagram curves from the theoretical model indicates the nonideal behavior of both systems (ibuprofen/poly(ethylene glycol)-6000 and acetaminophen/caffeine). Both the binary systems showed an increase in the dissolution rate of the PM and FM. However, the dissolution from the PM was comparable with the FM's dissolution profile. The theoretical solubility calculations using the modified solubility equation showed that the use of the eutectic temperature instead of the drug's melting point should give a 3-4-fold increase in drug solubility. However, the correlation between dissolution and solubility calculation showed that the FM did not improve the dissolution when compared with the respective PM's dissolution profile. The proposed explanation is that the unchanged crystal lattice energy in eutectics still limits the solubility and therefore the dissolution rate.
Project description:A simple, solvent-free synthetic protocol towards the synthesis of organic self-assembled macromolecules has been established. By employing mechanochemistry using glassware readily available to every organic chemist, we were able to synthesise three novel organic cage compounds exemplarily and to speed up the synthesis of a ferrocene-containing macrocycle by a factor of 288 compared to the solution-based synthesis. The structural investigation of the newly synthesised cages revealed different modes of connectivity from using ferrocene-containing aldehydes caused by the free rotation of the cyclopentadienyl units against each other. By extending the facile solvent-free synthesis to ball-milling, even compounds that show lower reactivity could be employed in the dynamic covalent formation of organometallic cage compounds. The presented protocol gives access to otherwise inaccessible structures, speeds up general synthetic workflows, and simultaneously reduces the environmental impact of supramolecular syntheses.
Project description:Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.
Project description:To clarify the crystal chemical features of natural and synthetic oxalates Me2+(C2O4)∙2H2O (Me2+ = Fe, Mn, Mg, Zn), including minerals of the humboldtine group, solid solutions of lindbergite Mn(C2O4)∙2H2O-glushinskite Mg(C2O4)∙2H2O were precipitated under various conditions, close to those characteristic of mineralization in biofilms: at the stoichiometric ratios ((Mn + Mg)/C2O4 = 1) and non-stochiometric ratios ((Mn + Mg)/C2O4 < 1), in the presence and absence of citrate ions. Investigation of precipitates was carried out by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Thermodynamic modelling was performed in order to evaluate the lindbergite-glushinskite equilibrium. It was shown that glushinskite belongs to the orthorhombic β-modification (sp. Gr. Fddd), while lindbergite has a monoclinic α-modification (sp. gr. C2/c). Mg ions incorporate lindbergite in much higher quantities than Mn ions incorporate glushinskite; moreover, Mn glushinskites are characterized by violations of long-range order in their crystal structure. Lindbergite-glushinskite transition occurs abruptly and can be classified as a first-order isodimorphic transition. The Me2+/C2O4 ratio and the presence of citric acid in the solution affect the isomorphic capacity of lindbergite and glushinskite, the width of the transition and the equilibrium Mg/Mn ratio. The transition is accompanied by continuous morphological changes in crystals and crystal intergrowths. Given the obtained results, it is necessary to take into account in biotechnologies aimed at the bioremediation/bioleaching of metals from media containing mixtures of cations (Mg, Mn, Fe, Zn).
Project description:The title compound, [Fe(C7H9N2)2], crystallizes with two crystallographically independent mol-ecules in the unit cell. These represent the chiral atropoisomers distinguished by the mutual arrangement of the two acet-yl-hydrazone groups with a cis conformation of the C=N bonds. The two cyclo-penta-dienyl (Cp) rings are planar and nearly parallel, the tilt between the two rings being 3.16 (16)° [4.40 (18)° for the second independent mol-ecule]. The conformation of the Cp rings is close to eclipsed, the twist angle being 0.1 (2)° [3.3 (2)°]. The two acet-yl-hydrazone substituents are also planar and are inclined at 13.99 (15)/9.17 (16)° [6.83 (17)/14.59 (15)°] relative to the Cp rings. The Fe-C bond lengths range from 2.035 (3) to 2.065 (2) Å, with an average of 2.050 (3) Å [2.036 (3) to 2.069 (2), average 2.046 (3) Å], which agrees well with those reported for most ferrocene derivatives. In the crystal, the mol-ecules form dimers via two strong N-H⋯N hydrogen bonds. The dimers are linked into a three-dimensional framework by weak N-H⋯N hydrogen bonds.
Project description:The mol-ecular structure of the trinuclear title compound, [Fe3(C10H8)3] {systematic name: tris-[μ-(η(5):η(5))-1,1'-bi-cyclo-penta-dien-yl]tri-iron(II)}, consists of three ferrocene subunits (each with an eclipsed conformation) that are condensed via C-C bonds of the fulvalene moieties into a cyclic trimer. The angles between the planes of the cyclo-penta-dienyl (Cp) rings within the three fulvalene moieties are 76.1 (3), 80.9 (3) and 81.7 (3)°. In the crystal, C-H⋯π inter-actions between neighbouring mol-ecules lead to the cohesion of the structure.
Project description:A protein crystal lattice consists of surface contact regions, where the interactions of specific groups play a key role in stabilizing the regular arrangement of the protein molecules. In an attempt to control protein incorporation in a crystal lattice, a leucine zipper-like hydrophobic interface (comprising four leucine residues) was introduced into a helical region (helix 2) of the human pancreatic ribonuclease 1 (RNase 1) that was predicted to form a suitable crystallization interface. Although crystallization of wild-type RNase 1 has not yet been reported, the RNase 1 mutant having four leucines (4L-RNase 1) was successfully crystallized under several different conditions. The crystal structures were subsequently determined by X-ray crystallography by molecular replacement using the structure of bovine RNase A. The overall structure of 4L-RNase 1 is quite similar to that of the bovine RNase A, and the introduced leucine residues formed the designed crystal interface. To characterize the role of the introduced leucine residues in crystallization of RNase 1 further, the number of leucines was reduced to three or two (3L- and 2L-RNase 1, respectively). Both mutants crystallized and a similar hydrophobic interface as in 4L-RNase 1 was observed. A related approach to engineer crystal contacts at helix 3 of RNase 1 (N4L-RNase 1) was also evaluated. N4L-RNase 1 also successfully crystallized and formed the expected hydrophobic packing interface. These results suggest that appropriate introduction of a leucine zipper-like hydrophobic interface can promote intermolecular symmetry for more efficient protein crystallization in crystal lattice engineering efforts.
Project description:Ionic transport in solid electrolytes can often be approximated as ions performing a sequence of hops between distinct lattice sites. If these hops are uncorrelated, quantitative relationships can be derived that connect microscopic hopping rates to macroscopic transport coefficients; i.e. tracer diffusion coefficients and ionic conductivities. In real materials, hops are uncorrelated only in the dilute limit. At non-dilute concentrations, the relationships between hopping frequency, diffusion coefficient and ionic conductivity deviate from the random walk case, with this deviation quantified by single-particle and collective correlation factors, f and fI, respectively. These factors vary between materials, and depend on the concentration of mobile particles, the nature of the interactions, and the host lattice geometry. Here, we study these correlation effects for the garnet lattice using lattice-gas Monte Carlo simulations. We find that, for non-interacting particles (volume exclusion only), single-particle correlation effects are more significant than for any previously studied three-dimensional lattice. This is attributed to the presence of two-coordinate lattice sites, which causes correlation effects intermediate between typical three-dimensional and one-dimensional lattices. Including nearest-neighbour repulsion and on-site energies produces more complex single-particle correlations and introduces collective correlations. We predict particularly strong correlation effects at xLi=3 (from site energies) and xLi=6 (from nearest-neighbour repulsion), where xLi=9 corresponds to a fully occupied lithium sublattice. Both effects are consequences of ordering of the mobile particles. Using these simulation data, we consider tuning the mobile-ion stoichiometry to maximize the ionic conductivity, and show that the 'optimal' composition is highly sensitive to the precise nature and strength of the microscopic interactions. Finally, we discuss the practical implications of these results in the context of lithium garnets and other solid electrolytes.