Project description:Cancer is caused by uncontrollable growth of neoplastic cells, leading to invasion of adjacent and distant tissues resulting in death. Cancer cells have specific nutrient(s) auxotrophy and have a much higher nutrient demand compared to normal tissues. Therefore, different metabolic inhibitors or nutrient-depleting enzymes have been tested for their anti-cancer activities. We review recent available laboratory and clinical data on using various specific amino acid metabolic pathways inhibitors in treating cancers. Our focus is on glutamine, asparagine, and arginine starvation. These three amino acids are chosen due to their better scientific evidence compared to other related approaches in cancer treatment. Amino acid-specific depleting enzymes have been adopted in different standard chemotherapy protocols. Glutamine starvation by glutaminase inhibitior, transporter inhibitor, or glutamine depletion has shown to have significant anti-cancer effect in pre-clinical studies. Currently, glutaminase inhibitor is under clinical trial for testing anti-cancer efficacy. Clinical data suggests that asparagine depletion is effective in treating hematologic malignancies even as a single agent. On the other hand, arginine depletion has lower toxicity profile and can effectively reduce the level of pro-cancer biochemicals in patients as shown by ours and others' data. This supports the clinical use of arginine depletion as anti-cancer therapy but its exact efficacy in various cancers requires further investigation. However, clinical application of these enzymes is usually hindered by common problems including allergy to these foreign proteins, off-target cytotoxicity, short half-life and rapidly emerging chemoresistance. There have been efforts to overcome these problems by modifying the drugs in different ways to circumvent these hindrance such as (1) isolate human native enzymes to reduce allergy, (2) isolate enzyme isoforms with higher specificities and efficiencies, (3) pegylate the enzymes to reduce allergy and prolong the half-lives, and (4) design drug combinations protocols to enhance the efficacy of chemotherapy by drug synergy and minimizing resistance. These improvements can potentially lead to the development of more effective anti-cancer treatment with less adverse effects and higher therapeutic efficacy.
Project description:Cisplatin is a mainstay of cancer chemotherapy. It forms DNA adducts, thereby activating poly(ADP-ribose) polymerases (PARPs) to initiate DNA repair. The PARP substrate NAD+ is synthesized from 5-phosphoribose-1-pyrophosphate (PRPP), and we found that treating cells for 6 h with cisplatin reduced intracellular PRPP availability. The decrease in PRPP was likely from (1) increased PRPP consumption, because cisplatin increased protein PARylation and PARP1 shRNA knock-down returned PRPP towards normal, and (2) decreased intracellular phosphate, which down-regulated PRPP synthetase activity. Depriving cells of a single essential amino acid decreased PRPP synthetase activity with a half-life of ~ 8 h, and combining cisplatin and amino acid deprivation synergistically reduced intracellular PRPP. PRPP is a rate-limiting substrate for purine nucleotide synthesis, and cisplatin inhibited de novo purine synthesis and DNA synthesis, with amino acid deprivation augmenting cisplatin's effects. Amino acid deprivation enhanced cisplatin's cytotoxicity, increasing cellular apoptosis and DNA strand breaks in vitro, and intermittent deprivation of lysine combined with a sub-therapeutic dose of cisplatin inhibited growth of ectopic hepatomas in mice. Augmentation of cisplatin's biochemical and cytotoxic effects by amino acid deprivation suggest that intermittent deprivation of an essential amino acid could allow dose reduction of cisplatin; this could reduce the drug's side effects, and allow its use in cisplatin-resistant tumors.
Project description:Caffeic acid phenethyl ester (CAPE) is a key bioactive ingredient of honeybee propolis and is claimed to have anticancer activity. Since mortalin, a hsp70 chaperone, is enriched in a cancerous cell surface, we recruited a unique cell internalizing anti-mortalin antibody (MotAb) to generate mortalin-targeting CAPE nanoparticles (CAPE-MotAb). Biophysical and biomolecular analyses revealed enhanced anticancer activity of CAPE-MotAb both in in vitro and in vivo assays. We demonstrate that CAPE-MotAb cause a stronger dose-dependent growth arrest/apoptosis of cancer cells through the downregulation of Cyclin D1-CDK4, phospho-Rb, PARP-1, and anti-apoptotic protein Bcl2. Concomitantly, a significant increase in the expression of p53, p21WAF1, and caspase cleavage was obtained only in CAPE-MotAb treated cells. We also demonstrate that CAPE-MotAb caused a remarkably enhanced downregulation of proteins critically involved in cell migration. In vivo tumor growth assays for subcutaneous xenografts in nude mice also revealed a significantly enhanced suppression of tumor growth in the treated group suggesting that these novel CAPE-MotAb nanoparticles may serve as a potent anticancer nanomedicine.
Project description:A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.
Project description:X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF3) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF3-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.42. It has been demonstrated that CeF3-FMN NPs exhibit pH-dependent radiation-induced redox activity when exposed to X-rays. This activity results in the generation of reactive oxygen species, which is associated with the scintillation properties of cerium and the transfer of electrons to FMN. The synthesized NPs have been demonstrated to exhibit minimal cytotoxicity towards normal cells (NCTC L929 fibroblasts) but are more toxic to tumor cells (epidermoid carcinoma A431). Concurrently, the synthesized NPs (CeF3 and CeF3-FMN NPs) demonstrate a pronounced selective radiosensitizing effect on tumor cells at concentrations of 10-7 and 10-3 M, resulting in a significant reduction in their clonogenic activity, increasing radiosensitivity for cancer cells by 1.9 times following X-ray irradiation at a dose of 3 to 6 Gy. In the context of normal cells, these nanoparticles serve the function of antioxidants, maintaining a high level of clonogenic activity. Functional nanoscintillators on the basis of cerium fluoride can be used as part of the latest technologies for the treatment of tumors within the framework of X-PDT.
Project description:The hydrometallurgical recovery of gold from electronic waste and gold slag is a hot research topic. To develop a cost-effective and environmentally friendly adsorbent for gold recovery, four types of amino-acid (arginine, histidine, methionine, and cysteine)-functionalized cellulose microspheres were prepared via a radiation technique. The adsorption performance of the amino acid resins toward Au(III) ions was systematically investigated by batch experiments. The amino acid resins could absorb Au(III) ions at a wide pH range. The adsorption process was followed by the pseudo-second-order model and Langmuir model. The theoretical maximum adsorption capacity was calculated as 396.83 mg/g, 769.23 mg/g, 549.45 mg/g, and 636.94 mg/g for ArgR, HisR, MetR, and CysR, respectively. The amino acid resins could effectively and selectively recover trace Au(III) ions from the leaching solutions of printed circuit board and gold slag waste. Lastly, the mechanism underlying amino acid resin's Au(III) ion recovery capability was investigated by FTIR, XRD, and XPS analyses. This work describes a series of cost-effective gold adsorbents with excellent selectivity and adsorption capacity to boost their practical application.
Project description:Phagocytosis represents a mechanism used by macrophages to remove pathogens and cellular debris. Recent evidence suggested that amino acid or glucose deprivation may cause an increase in phagocytosis of heat-inactivated Escherichia coli and Staphylococcus aureus by macrophages, but not the uptake of platelets, apoptotic cells or beads. Increased phagocytosis of bacteria could be blocked by phagocytosis inhibitors and depended on p38 MAP kinase activity. To examine potentially important downstream pathways linked to EBSS-induced starvation and p38 MAP kinase activation, a full genome microarray representing over 41,000 mouse genes or transcripts was probed with cDNA isolated from J774A.1 macrophages that were treated with EBSS, EBSS supplemented with the p38 inhibitor SB202190 or control medium supplemented with 10% fetal bovine serum. Keywords: autophagy, heterophagy, p38 MAP kinase, scavenger receptor A, starvation Prior to RNA isolation, J774A.1 macrophages were incubated in RPMI 1640 medium supplemented with (i) 10% fetal bovine serum, (ii) Earleâs Balanced Salt Solution (EBSS) or (iii) EBSS supplemented with 10 µM SB202190 for 6 hours.
Project description:Phagocytosis represents a mechanism used by macrophages to remove pathogens and cellular debris. Recent evidence suggested that amino acid or glucose deprivation may cause an increase in phagocytosis of heat-inactivated Escherichia coli and Staphylococcus aureus by macrophages, but not the uptake of platelets, apoptotic cells or beads. Increased phagocytosis of bacteria could be blocked by phagocytosis inhibitors and depended on p38 MAP kinase activity. To examine potentially important downstream pathways linked to EBSS-induced starvation and p38 MAP kinase activation, a full genome microarray representing over 41,000 mouse genes or transcripts was probed with cDNA isolated from J774A.1 macrophages that were treated with EBSS, EBSS supplemented with the p38 inhibitor SB202190 or control medium supplemented with 10% fetal bovine serum. Keywords: autophagy, heterophagy, p38 MAP kinase, scavenger receptor A, starvation
Project description:Osteosarcoma (OSA) is malignant bone tumor, occurring in children and adults, characterized by poor prognosis. Despite advances in chemotherapy and surgical techniques, the survival of osteosarcoma patients is not improving significantly. Currently, great efforts are taken to identify novel selective strategies, distinguishing between cancer and normal cells. This includes development of biomimetic scaffolds with anticancer properties that can simultaneously support and modulate proper regeneration of bone tissue. In this study cytotoxicity of scaffolds composed from poly (L-lactic acid) functionalized with nanohydroxyapatite (nHAp) and doped with europium (III) ions-10 wt % 3 mol % Eu3+: nHAp@PLLA was tested using human osteosarcoma cells: U-2 OS, Saos-2 and MG-63. Human adipose tissue-derived stromal cells (HuASCs) were used as non-transformed cells to determine the selective cytotoxicity of the carrier. Analysis included evaluation of cells morphology (confocal/scanning electron microscopy (SEM)), metabolic activity and apoptosis profile in cultures on the scaffolds. Results obtained indicated on high cytotoxicity of scaffolds toward all OSA cell lines, associated with a decrease of cells' viability, deterioration of metabolic activity and activation of apoptotic factors determined at mRNA and miRNA levels. Simultaneously, the biomaterials did not affect HuASCs' viability and proliferation rate. Obtained scaffolds showed a bioimaging function, due to functionalization with luminescent europium ions, and thus may find application in theranostics treatment of OSA.
Project description:Sesamol is effective against melanoma cells with less damage to normal cells. The underlying selective cytotoxicity of sesamol in melanoma vs. non-cancerous cells is undefined. Melanoma cells differ from normal cells by over-expression of the L-type amino acid transporter 1 (LAT1). We sought to clarify the transport mechanism on selective cytotoxicity of sesamol in melanoma cells. A human melanoma cell line (SK-MEL-2) and African monkey epithelial cell line (Vero) were used to study the cellular uptake and cytotoxicity of sesamol. The intracellular concentration of sesamol was quantified by UV-HPLC. The cytotoxicity was determined by neutral red uptake assay. Sesamol showed a higher distribution volume and uptake clearance in SK-MEL-2 than Vero cells. Sesamol was distributed by both carrier-mediated and passive transport by having greater carrier-mediated transport into SK-MEL-2 cells than Vero cells. Higher mRNA expression and function of LAT1 over LAT2 were evident in SK-MEL-2 cells compared to Vero cells. Sesamol uptake and sesamol cytotoxicity were inhibited by the LAT1 inhibitor, suggesting LAT1 had a role in sesamol transport and its bioactivity in melanoma. The LAT1-mediated transport of sesamol is indicative of how it engages cytotoxicity in melanoma cells with promising therapeutic benefits.