Ontology highlight
ABSTRACT:
SUBMITTER: Ying H
PROVIDER: S-EPMC10850133 | biostudies-literature | 2024 Feb
REPOSITORIES: biostudies-literature
Ying Hanning H Liu Xiaoqing X Zhang Min M Ren Yiyue Y Zhen Shihui S Wang Xiaojie X Liu Bo B Hu Peng P Duan Lian L Cai Mingzhi M Jiang Ming M Cheng Xiangdong X Gong Xiangyang X Jiang Haitao H Jiang Jianshuai J Zheng Jianjun J Zhu Kelei K Zhou Wei W Lu Baochun B Zhou Hongkun H Shen Yiyu Y Du Jinlin J Ying Mingliang M Hong Qiang Q Mo Jingang J Li Jianfeng J Ye Guanxiong G Zhang Shizheng S Hu Hongjie H Sun Jihong J Liu Hui H Li Yiming Y Xu Xingxin X Bai Huiping H Wang Shuxin S Cheng Xin X Xu Xiaoyin X Jiao Long L Yu Risheng R Lau Wan Yee WY Yu Yizhou Y Cai Xiujun X
Nature communications 20240207 1
Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230- ...[more]