Project description:Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N2 adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb. The XPS showed for the TaTi-MCM-41 sample that framework titanium is the major component. The new nanoparticles obtained were used as catalysts for oxidation with hydrogen peroxide of olefinic compounds (1,4 cyclohexadiene, cyclohexene, styrene) and photodegradation of organic pollutants (phenol, methyl orange) from water. The results showed improvementsin activity and selectivity in oxidation reactions by the addition of the second metal to the Ta-MCM-41 catalyst. The slow addition of H2O2 was also beneficial for the selectivity of epoxide products and the stability of the catalysts. The band gap energy values decreased in the presence of the second metal, and the band edge diagram evidenced positive potential for all the conduction bands of the bimetallic samples. The highestlevels of photocatalytic degradation were obtained for the samples with TaTi and TaV.
Project description:Mg, Ca, and Ba catalysts supported on structured mesoporous silica oxides types MCM-41 and Al-SBA-15 were synthesized and investigated in sulfone cracking for sulfur removal from oxidized diesel fuel. Functional materials and catalysts were characterized by low-temperature nitrogen adsorption/desorption, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy techniques. Catalytic tests were carried out in fixed-bed and batch reactors with a model compound dibenzothiophene sulfone and oxidized diesel fraction as a feed. MgO/MCM-41 and MgO/Al-MCM-41 possess high activity in sulfone cracking. The sulfur content in the diesel fraction decreases from initial 450 up to 100 ppmw. Catalysts can be regenerated for reuse in several cycles and may be potentially scaled up for industrial applications.
Project description:Fly ash (FA) fractions with a particle size of 63 µm < FA < 250 µm obtained by sieve fractionation were used as a partial carbon black (CB) replacement in a rubber mixture based on styrene-butadiene rubber (SBR). In order to improve the interactions at the interface between rubber and fractionated ash, at the stage of preparing the rubber mixtures, two different vinyl silanes were added to the system: Vinyltrimethoxysilane (U-611) or Vinyl-tris (2-methoxy-ethoxy) silane (LUVOMAXX VTMOEO DL50), silane with epoxy groups: 3-(glycidoxypropyl)trimethoxysilane (U-50) or sulfur functionalized silanes: containing sulfide bridges: Bis(triethoxysilylpropyl)polysulfide silane (Si-266) or mercapto groups: Mercaptopropyltrimethoxysilane (Dynaslan MTMO). The conducted research confirmed the effectiveness of silanization with selected functional silanes, from the point of view of improving the processing and operational properties of vulcanizates, in which CB is partially replaced with the finest fractions of fly ash. The silanization generally increased the interaction at the rubber-ash interface, while improving the degree of filler dispersion in the rubber mixture. The results of TGA and FTIR analyses confirmed the presence of silanes chemically bonded to the surface of fly ash particles. SEM tests and determination of the bound rubber (BdR) content show that the introduction of the silanes to the mixture increases the degree of ash dispersion (DI) and the Payne effect, which is the greatest when mercaptosilane was used for modification. The highest increase in torque, which was recorded in the case of rubber mixtures containing sulfur silanes and silane with epoxy groups, may be due to their participation in the vulcanization process, which is confirmed by the results of vulcametric studies. The lowest values of mechanical strength, elongation at break, and the highest hardness of vulcanizates obtained in this case may be the result of the over-crosslinking of the rubber. The addition of sulfur-containing silanes significantly slowed down the vulcanization process, which is particularly visible (up to three times extension of the t90 parameter, compared to mixtures without silane) in the case of Si-266. The addition of silanes, except for Si-266 (with a polysulfide fragment), generally improved the abrasion resistance of vulcanizates. The Dynaslan MTMO silane (with mercapto groups) performs best in this respect. Proper selection of silane for the finest fraction of fly ash in the rubber mixtures tested allows for an increase in the mechanical strength of their vulcanizates from 9.1 to 17 MPa, elongation at break from 290 to 500%, hardness from 68 to 74 °ShA, and reduction in abrasion from 171 to 147 mm3.
Project description:The potential use of fly ash (FA) originating from lignite combustion at the Belchatow Power Plant (Poland) as filler for rubber mixes was evaluated. Samples of fly ash collected from heaps created in different years were compared according to their chemical and phase composition, particle size distribution, and morphology. The sieve fractionation of fly ash results in size fractions of different chemical structures, phase compositions, and morphologies, reflected in changes to their specific surface area, surface energy, and activity in rubber mixes. Fractionation turned out to be more effective than grinding from the point of view of using ash as a filler for rubber mixes, because it results in higher specific surface area (SSA) and chemical composition differentiation. Carbon black can be replaced by up to 40% by weight with the fly ash fraction (FFA) of dimensions below 125 µm, without any significant deterioration in the mechanical properties of styrene butadiene rubber (SBR) vulcanizates filled with 50 phr of active carbon black (N 220). Despite the larger fly ash fraction of grain dimensions in the range between 125 and 250 µm presenting the highest specific surface area, the particle size adversely affects its strengthening effect in rubber. Taking into account all the tests performed, ranging from morphology, Payne effect and bound rubber, to mechanical and abrasion tests, the highest potential effectivity is presented by a sample containing 30 phr of N 220 and 20 phr of FFA of grain sizes from 63 to 125 µm. The obtained results indicate that fractionation seems to be an effective physical method of fly ash valorization.
Project description:The possibility of crystallizing silicalite-1 (MFI) from the pore walls of as-synthesized MCM-41 via steam-assisted crystallization (SAC) was thoroughly investigated. A kinetic study was conducted through the impregnation of as-synthesized MCM-41 with the structure-directing agent tetrapropyl-ammonium hydroxide (TPAOH). Materials obtained after different SAC treatment times (1-288 h) were characterized by XRD, nitrogen physisorption at 77 K, TGA/DTA, and SEM. The achieved results allowed us to conclude that during SAC treatment, rapid destruction of the hexagonal mesophase occurs with the enlargement of mesopores, probably by their coalescence, until achieving non-porous amorphous silica. Only thereafter is the crystallization of the MFI phase evidenced through the development of micron-sized (>10 µm) MFI structured crystals. This study suggests the probable practical impossibility of even partial crystallization of the pore walls of mesoporous materials by SAC.
Project description:Highly ordered aluminum-containing mesoporous silica (Al-MCM-41) was prepared using attapulgite clay mineral as a Si and Al source. Mesoporous complexes embedded with CuO nanoparticles were subsequently prepared using various copper sources and different copper loadings in a direct synthetic route. The resulting CuO/Al-MCM-41 composite possessed p6mm hexagonally symmetry, well-developed mesoporosity, and relatively high BET surface area. In comparison to pure silica, these mesoporous materials embedded with CuO nanoparticles exhibited smaller pore diameter, thicker pore wall, and enhanced thermal stability. Long-range order in the aforementioned samples was observed for copper weight percentages as high as 30%. Furthermore, a significant blue shift of the absorption edge for the samples was observed when compared with that of bulk CuO. H2-TPR measurements showed that the direct-synthesized CuO/Al-MCM-41 exhibited remarkable redox properties compared to the post-synthesized samples, and most of the CuO nanoparticles were encapsulated within the mesoporous structures. The possible interaction between CuO and Al-MCM-41 was also investigated.
Project description:Mesoporous silica has received much attention due to its well-defined structural order, high surface area, and tunable pore diameter. To successfully employ mesoporous silica for nanotechnology applications it is important to consider how it is influenced by solvent molecules due to the fact that most preparation procedures involve treatment in various solvents. In the present work we contribute to this important topic with new results on how MCM-41 is affected by a simple treatment in alcohol at room temperature. The effects of alcohol treatment are characterized by TGA, FTIR, and sorption calorimetry. The results are clear and show that treatment of MCM-41 in methanol, ethanol, propanol, butanol, pentanol, or octanol at room temperature introduces alkoxy groups that are covalently bound to the silica surface. It is shown that alcohol treated MCM-41 becomes more hydrophobic and that this effect is sequentially more prominent going from methanol to octanol. Chemical formation of alkoxy groups onto MCM-41 occurs both for calcined and hydroxylated MCM-41 and the alkoxy groups are hydrolytically unstable and can be replaced by silanol groups after exposure to water. The results are highly relevant for mesoporous silica applications that involve contact or treatment in protic solvents, which is very common.
Project description:To research and develop potential multifunctional nanoprobes for biological application, lanthanide-doped MCM-41 (Ln-MCM-41, Ln = Gd/Eu) silica nanoparticles with excellent pore structure and optical-magnetic properties were synthesized via a facile and economical sol-gel method. The microstructure and pore distribution of Ln-MCM-41 nanoparticles were obviously affected by the Ln-doping. As the Ln/Si mole ratio increased, the specific surface area and total pore volume of Ln-MCM-41 nanoparticles rapidly decreased. However, the Ln-MCM-41 nanoparticles still retained the typical well-ordered mesoporous structure, and exhibited excellent drug release behavior. Moreover, the drug release rate of Ln-MCM-41 was remarkably pH-dependent and increased gradually upon decreasing pH. Additionally, these nanoparticles also exhibit considerable photoluminescence properties, living cells photoluminescence imaging in vitro, and paramagnetism behavior at room temperature due to the Ln3+-ions doping. Our research shows the possibility of our Ln-MCM-41 nanoparticles as multifunctional nanoprobes for application in bioseparation, bioimaging, and drug delivery.
Project description:The use of biomass for the production of energy and higher added value products is a topic of increasing interest in line with growing environmental concerns and circular economy. Mesoporous material Sn-In-MCM-41 was synthesized for the first time and used as a catalyst for the transformation of sugars to methyl lactate (ML). This catalyst was characterized in depth by various techniques and compared with Sn-MCM-41 and In-MCM-41 catalysts. In the new Sn-In-MCM-41 material, both metals, homogeneously distributed throughout the mesoporous structure of MCM-41, actuate in a cooperative way in the different steps of the reaction mechanism. As a result, yields to ML of 69.4 and 73.9% in the transformation of glucose and sucrose were respectively reached. In the case of glucose, the ML yield 1.5 and 2.6 times higher than those of Sn-MCM-41 and In-MCM-41 catalysts, respectively. The Sn-In-MCM-41 catalyst was reused in the transformation of glucose up to four cycles without significant loss of catalytic activity. Finally, life cycle assessment comparison between chemical and biochemical routes to produce ML allowed us to conclude that the use of Sn-In-MCM-41 reduces the environmental impacts compared to Sn-MCM-41. Nevertheless, to make the chemical route comparable to the biochemical one, improvements in the catalyst and ML synthesis have to be achieved.
Project description:Layered double oxides are widely employed in catalyzing the aldol condensation for producing biofuels, but its selectivity and stability need to be further improved. Herein, a novel MCM-41-supported Mg-Al-layered double oxide (LDO/MCM-41) was prepared via the in situ integration of a sol-gel process and coprecipitation, followed by calcination. This composite was first employed to catalyze the self-condensation of cyclopentanone for producing high-density cycloalkane precursors. LDO/MCM-41 possessed large specific surface area, uniform pore size distribution, abundant medium basic sites and Bronsted acid sites. Compared with the bulk LDO, LDO/MCM-41 exhibited a higher selectivity for C10 and C15 oxygenates at 150 °C (93.4% vs. 84.6%). The selectivity for C15 was especially enhanced on LDO/MCM-41, which was three times greater than that on LDO. The stability test showed that naked LDO with stronger basic strength had a rapid initial activity, while it suffered an obvious deactivation due to its poor carbon balance. LDO/MCM-41 with lower basic strength had an enhanced stability even with a lower initial activity. Under the optimum conditions (50% LDO loading, 170 °C, 7 h), the cyclopentanone conversion on LDO/MCM-41 reached 77.8%, with a 60% yield of C10 and 15.2% yield of C15.