Project description:Permeability is a key parameter for investigating the flow ability of sedimentary rocks. The conventional model for calculating permeability is derived from Darcy's law, which is valid only for continuum flow in porous rocks. We discussed the feasibility of simulating methane transport characteristics in the organic nano-pores of shale through the Lattice Boltzmann method (LBM). As a first attempt, the effects of high Knudsen number and the associated slip flow are considered, whereas the effect of adsorption in the capillary tube is left for future work. Simulation results show that at small Knudsen number, LBM results agree well with Poiseuille's law, and flow rate (flow capacity) is proportional to the square of the pore scale. At higher Knudsen numbers, the relaxation time needs to be corrected. In addition, velocity increases as the slip effect causes non negligible velocities on the pore wall, thereby enhancing the flow rate inside the pore, i.e., the permeability. Therefore, the LBM simulation of gas flow characteristics in organic nano-pores provides an effective way of evaluating the permeability of gas-bearing shale.
Project description:The adsorption behavior and the mechanism of a CO2/CH4 mixture in shale organic matter play significant roles to predict the carbon dioxide sequestration with enhanced gas recovery (CS-EGR) in shale reservoirs. In the present work, the adsorption performance and the mechanism of a CO2/CH4 binary mixture in realistic shale kerogen were explored by employing grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. Specifically, the effects of shale organic type and maturity, temperature, pressure, and moisture content on pure CH4 and the competitive adsorption performance of a CO2/CH4 mixture were investigated. It was found that pressure and temperature have a significant influence on both the adsorption capacity and the selectivity of CO2/CH4. The simulated results also show that the adsorption capacities of CO2/CH4 increase with the maturity level of kerogen. Type II-D kerogen exhibits an obvious superiority in the adsorption capacity of CH4 and CO2 compared with other type II kerogen. In addition, the adsorption capacities of CO2 and CH4 are significantly suppressed in moist kerogen due to the strong adsorption strength of H2O molecules on the kerogen surface. Furthermore, to characterize realistic kerogen pore structure, a slit-like kerogen nanopore was constructed. It was observed that the kerogen nanopore plays an important role in determining the potential of CO2 subsurface sequestration in shale reservoirs. With the increase in nanopore size, a transition of the dominated gas adsorption mechanism from micropore filling to monolayer adsorption on the surface due to confinement effects was found. The results obtained in this study could be helpful to estimate original gas-in-place and evaluate carbon dioxide sequestration capacity in a shale matrix.
Project description:The adsorption characteristics of methane in shales play a critical role in the assessment of shale gas resources. The microscopic adsorption mechanism of methane considering the effect of moisture and especially salinity remains to be explored. In this work, combined molecular dynamics and grand canonical Monte Carlo simulations are conducted to investigate the adsorption behaviors of methane in the realistic kerogen matrixes containing different moisture contents (0-6 wt %) and various salinities (0-6 mol/L NaCl). Adsorption processes are simulated under realistic reservoir conditions at four temperatures in the range from 298.15 to 358.15 K and pressures up to 40 MPa. Effects of the moisture content on methane adsorption capacities are analyzed in detail. Simulation results show that the methane adsorption capacity declines as the moisture content increases. In comparison to the dry kerogen matrix, the reduction in the maximum CH4 adsorption capacity is as high as 42.5% in moist kerogen, with a moisture content of 6.0 wt % at 338.15 K. The overlap observed in the density distributions of water molecules and decrease in adsorbed methane indicates that the water molecules occupy the adsorption sites and, thus, lead to the reduction in methane adsorption capacity. Besides, the effects of salinity on CH4 adsorption isotherms are discussed. The salinity is found to have a negative influence on the methane adsorption capacity. The maximum CH4 adsorption capacity reduces around 6.0% under the salinity of 6 mol/L at 338.15 K. Adsorption of methane in kerogens of constant salinity but different moisture contents are further discussed. Results from the present study show that the moisture content has a greater impact on the adsorption of methane compared to that of salinity. The findings of this study have important implications for more accurate estimation of shale gas in place.
Project description:As antibiotic contamination increases in wastewater and aqueous environments, the reduction of antibiotics has become a pertinent topic of research regarding water treatment. Clay minerals, such as smectite or kaolinite, are important adsorbents used in water treatment, and sufficient removal of antibiotics by clay minerals is expected. In this study, the adsorption of oxytetracycline (OTC) on kaolinite was investigated. The experimental data of OTC adsorption on kaolinite fit the pseudo-second-order kinetics model well (R2>0.98). After 24 h, adsorption equilibrium of OTC on kaolinite was reached. The Langmuir model was better fitting with the adsorption isotherms generated from experimental data and OTC adsorption occurred on the external surface of kaolinite. The analysis of several thermodynamic parameters indicated that the adsorption of OTC on kaolinite was spontaneous and thermodynamically favorable. With the increase of the pH of a solution, the adsorption capacity increased and then decreased. The adsorption coefficient (Kd) of 102-103 were obtained for adsorption process of OTC on kaolinite.