Project description:This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (LPMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius (R h) with pH in the dilute regime, the R h of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure. Fully ionized star PMAAs were also found to be less sensitive to changes in salt concentration and type of the counterion compared to linear PMAA. While R h of fully ionized linear PMAA decreased in the series Li+ > Na+ > K+ > Cs+ in agreement with the Hofmeister series, R h of star PMAAs was virtually independent of type of the counterion for eight-arm PMAA. However, molecular architecture strongly affected interactions of counterions with PMAAs. In particular, 7Li NMR revealed that the spin-lattice relaxation time T 1 of Li+ ions in low-salt solutions of eight-arm PMAA was ∼2-fold smaller than that in the solution of linear PMAA, suggesting slower Li+-ion dynamics within star polymers. An increase in concentration of monovalent chloride salts, c s, above that of the PMAA monomer unit concentration (c m) resulted in shrinking of both linear and star molecules, with the hydrodynamic size R h scaling as R h ∝ c s -0.11±0.01. Self-diffusion of linear and star polyelectrolytes was then studied in a wide range of polyelectrolyte concentrations (10-3 mol/L < c m < 0.5 mol/L) in low-salt (<10-4 mol/L of added salt) and high-salt (1 mol/L) solutions. In both the low-salt and high-salt regimes, diffusion coefficient D was lower for PMAAs with a larger number of arms at a fixed c m. In addition, in both cases, D plateaued at low polymer concentrations and decreased at higher polymer concentrations. However, while in the high-salt conditions, the concentration dependence of D reflected transitions between the dilute to semidilute solution regimes as expected for neutral chains in good and theta solvents, analysis of the diffusion data in the low-salt conditions using the scaling theory revealed a different origin of the concentration dependence of D. Specifically, in the low-salt solutions, both linear and star PMAAs exhibited unentangled (Rouse-like) dynamics in the entire range of polyelectrolyte concentrations.
Project description:We have found diffusion of polyelectrolyte chains within multilayer films to be highly anisotropic, with the preferential chain motion parallel to the substrate. The degree of anisotropy was quantified by a combination of fluorescence recovery after photobleaching and neutron reflectometry, probing chain diffusion in directions parallel and perpendicular to the substrate, respectively. Chain mobility was controlled by ionic strength of annealing solutions and steric hindrance to ionic pairing of interacting polyelectrolytes.
Project description:Scattering functions of sodium sulfonated polystyrene (NaPSS) star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS) technique. Whatever the concentration c, they display two maxima. The first, of abscissa q₁*, is related to a position order between star cores and scales as q₁* ∝ c1/3. The second, of abscissa q₂*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars), peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function ⁻ through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q₂* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q₁* value at c* through the relation 2R = 2π/q₁*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q₂* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.
Project description:We have prepared a series of ampholytic polymer films, using a self-initiated photografting and photopolymerization (SI-PGP) method to sequentially polymerize first anionic (deuterated methacrylic acid (dMAA)) and thereafter cationic (2-aminoethyl methacrylate (AEMA)) monomers to investigate the SI-PGP grafting process. Dry films were investigated by ellipsometry, X-ray, and neutron reflectometry, and their swelling was followed over a pH range from 4.5 to 10.5 with spectroscopic ellipsometry. The deuterated monomer allows us to separate the distributions of the two components by neutron reflectometry. Growth of both polymers proceeds via grafting of solution-polymerized fragments to the surface, and also the second layer is primarily grafted to the substrate and not as a continuation of the existing chains. The polymer films are stratified, with one layer of near 1:1 composition and the other layer enriched in one component and located either above or below the former layer. The ellipsometry results show swelling transitions at low and high pH but with no systematic variation in the pH values where these transitions occur. The results suggest that grafting density in SI-PGP-prepared homopolymers could be increased via repeated polymerization steps, but that this process does not necessarily increase the average chain length.
Project description:The influence of macromolecular architecture on shear-induced crystallization of poly(L-lactide) (PLLA) was studied. To this aim, three star PLLAs, 6-arm with Mw of 120 and 245 kg/mol, 4-arm with Mw of 123 kg/mol, and three linear PLLAs with Mw of 121, 240 and 339 kg/mol, were synthesized and examined. The PLLAs were sheared at 170 and 150 °C, at 5/s, 10/s and 20/s for 20 s, 10 s and 5 s, respectively, and then cooled at 10 or 30 °C/min. Shear-induced crystallization during cooling was followed by a light depolarization method, whereas the crystallized specimens were examined by DSC, 2D-WAXS, 2D-SAXS and SEM. The effect of shear depended on the shearing conditions, cooling rate and polymer molar mass but it was also affected by the macromolecular architecture. The shear-induced crystallization of linear PLLA with Mw of 240 kg/mol was more intense than that of the 6-arm polymer with similar Mw, most possibly due to its higher Mz. However, the influence of shear on the crystallization of the star polymers with Mw close to 120 kg/mol was stronger than on that of their linear analog. This was reflected in higher crystallization temperature, as well as crystallinity achieved during cooling.
Project description:We studied the self-assembly of miktoarm star polyelectrolytes with different numbers of arms in solutions with various ionic strengths using coarse-grained molecular dynamic simulations. Spherical micelles are obtained for star polyelectrolytes with fewer arms, whereas wormlike clusters are obtained for star polyelectrolytes with more arms at a low ionic strength environment, with hydrophilic arms showing a stretched conformation. The number of clusters shows an overall decreasing tendency with increasing the number of arms in star polyelectrolytes due to strong electrostatic coupling between polycations and polyanions. The formation of wormlike clusters follows an overall stepwise pathway with an intermittent association-dissociation process for star polyelectrolytes with weak electrostatic coupling. These computational results can provide relevant physical insights to understand the self-assembly mechanism of star polyelectrolytes in solvents with various ionic strengths and to design star polyelectrolytes with functional groups that can fine-tune self-assembled structures for specific applications.
Project description:Interface adhesion toughness between multilayer graphene films and substrates is a major concern for their integration into functional devices. Results from the circular blister test, however, display seemingly anomalous behaviour as adhesion toughness depends on number of graphene layers. Here we show that interlayer shearing and sliding near the blister crack tip, caused by the transition from membrane stretching to combined bending, stretching and through-thickness shearing, decreases fracture mode mixity G II/G I, leading to lower adhesion toughness. For silicon oxide substrate and pressure loading, mode mixity decreases from 232% for monolayer films to 130% for multilayer films, causing the adhesion toughness G c to decrease from 0.424 J m-2 to 0.365 J m-2. The mode I and II adhesion toughnesses are found to be G Ic = 0.230 J m-2 and G IIc = 0.666 J m-2, respectively. With point loading, mode mixity decreases from 741% for monolayer films to 262% for multilayer films, while the adhesion toughness G c decreases from 0.543 J m-2 to 0.438 J m-2.
Project description:Among all methods available for the preparation of multifunctional nanostructured composite materials with remarkable functional properties, Layer-by-Layer (LbL) assembly is currently one of the most widely used techniques due to its environmental friendliness, its ease of use and its versatility in combining a plethora of available colloids and macromolecules into finely tuned multicomponent architectures with nanometer scale control. Despite the importance of these systems in emerging technologies, their nanoscopic 3D structure, and thus the ability to predict and understand the device performance, is still largely unknown. In this article, we use neutron scattering to determine the average conformation of individual deuterated polyelectrolyte chains inside LbL assembled films. In particular, we determine that in LbL-films composed of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayers prepared from 2 M sodium chloride solutions the PSS chains exhibit a flattened coil conformation with an asymmetry factor of around seven. Albeit this highly non-equilibrium state of the polymer chain, its density profiles follow Gaussian distributions occupying roughly the same volume as in the bulk complex.
Project description:Photoswitchable materials are of significant interest for diverse applications from energy and data storage to additive manufacturing and soft robotics. However, the absorption profile is often a limiting factor for practical applications. This can be overcome using indirect excitation via complementary photophysical pathways, such as triplet sensitisation or photon upconversion. Here, we demonstrate the use of triplet-triplet annihilation upconversion (TTA-UC) to drive photoswitching of the energy storing photoswitch norbornadiene-quadricyclane (NBD-QC) in the solid-state. A photoswitchable bilayer polymer film, incorporating the TTA-UC sensitiser-emitter pair of platinum octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA), was used to trigger the photoinduced [2+2] cycloaddition of NBD to form QC using visible instead of UV light. The isolated TTA-UC film showed green-to-blue upconversion, with a competitive upconversion efficiency of (1.9 ± 0.1%) for the solid-state in air. Direct photoswitching of the isolated NBD film was demonstrated with a narrow UV light source (340 nm). However, in the bilayer film, spectral overlap between the upconverted blue emission in the TTA-UC film and the absorbance band of the NBD film resulted in indirect photoswitching using visible green light (532 nm, 1 W cm-2), thus extending the spectral operational window of the photoswitching film. The results demonstrate proof-of-feasibility of TTA-UC-promoted photoswitching in the solid-state, paving the way for potential applications in light-harvesting devices and smart coatings, using a wider selection of irradiation wavelengths.
Project description:An approach for the multilayer density analysis of polysaccharide thin films at the example of cellulose is presented. In detail, a model was developed for the evaluation of the density in different layers across the thickness direction of the film. The cellulose thin film was split into a so called "roughness layer" present at the surface and a "bulk layer" attached to the substrate surface. For this approach, a combination of multi-parameter surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM) was employed to detect changes in the properties, such as cellulose content and density, thickness and refractive index, of the surface near layer and the bulk layer. The surface region of the films featured a much lower density than the bulk. Further, these results correlate to X-ray reflectivity studies, indicating a similar layered structure with reduced density at the surface near regions. The proposed method provides an approach to analyse density variations in thin films which can be used to study material properties and swelling behavior in different layers of the films. Limitations and challenges of the multilayer model evaluation method of cellulose thin films were discussed. This particularly involves the selection of the starting values for iteration of the layer thickness of the top layer, which was overcome by incorporation of AFM data in this study.