Project description:The development of myopia is associated with scleral remodeling, but it is unclear which factors regulate this process. This study investigated bone morphogenetic protein-2 (BMP-2) expression in the sclera of guinea pigs with lens-induced myopia (LIM) and after recovery from myopia and evaluated the effect of BMP-2 on extracellular matrix (ECM) synthesis in human scleral fibroblasts (HSFs) cultured in vitro. Lens-induced myopia was brought about in two groups of guinea pigs (the lens-induced myopia and myopia recovery groups) by placing -4.00 D lenses on the right eye for three weeks. The left eye served as a contralateral control. In the recovery group, the lenses were removed after one week. The refractive power and axial length of the eyes were measured, and the BMP-2 expression levels in the sclera were measured. After three weeks, the lens-induced eyes acquired relative myopia in both groups of guinea pigs. Immunostaining of the eyeballs revealed significantly decreased BMP-2 expression in the posterior sclera of the myopic eyes compared to the contralateral eyes. One week after lens removal, BMP-2 expression recovered, and no differences were observed between the experimental and contralateral eyes in the recovery group. HSFs were cultured with BMP-2 or transforming growth factor-β1 (TGF-β1). Type I and type III collagen synthesis was significantly up-regulated following BMP-2 treatment in culture after one and two weeks, but the ratio of type III to type I collagen mRNA was not increased. Biosynthesis of glycosaminoglycan (GAG) and aggrecan was increased in HSFs treated with BMP-2. Some chondrogenesis-associated genes expression increased in HSFs treated with BMP-2. From this study, we concluded that BMP-2 is involved in scleral remodeling in the development and recovery of lens-induced myopia.
Project description:We investigated birefringence-derived scleral artifacts in optical coherence tomography (OCT) images of eyes with pathologic myopia. This study included 76 eyes of 42 patients with pathologic myopia. Five sets of OCT B-scan images of the macula were obtained using commercial swept-source OCT. A dataset of prototype swept-source polarization-diversity OCT images was used to identify polarization-dependent OCT images (i.e., complex averaging of OCT signals from two polarization channels) and polarization-independent OCT images (i.e., intensity averaging of two OCT signals). Polarization-dependent OCT images and commercial OCT images were assessed for the presence of birefringence-derived artifacts by comparison with polarization-independent OCT images. Both polarization-dependent OCT images and commercial OCT images contained scleral vessel artifacts. Scleral vessel artifacts were present in 46 of 76 eyes (60.5%) imaged by polarization-dependent OCT and 17 of 76 eyes (22.4%) imaged by commercial OCT. The proportion of images that showed scleral vessel artifacts was significantly greater among polarization-dependent OCT images than among commercial OCT images (P < 0.001). Additionally, polarization-dependent OCT images showed low-intensity band artifacts. This study demonstrated the existence of birefringence-derived scleral artifacts in commercial OCT images and indicated that polarization-diversity OCT is an effective tool to evaluate the presence of these artifacts.
Project description:PurposeMicroRNA (miRNAs) have been previously implicated in scleral remodeling in normal eye growth. They have the potential to be therapeutic targets for prevention/retardation of exaggerated eye growth in myopia by modulating scleral matrix remodeling. To explore this potential, genome-wide miRNA and messenger RNA (mRNA) scleral profiles in myopic and control eyes from mice were studied.MethodsC57BL/6J mice (n = 7; P28) reared under a 12L:12D cycle were form-deprived (FD) unilaterally for 2 weeks. Refractive error and axial length changes were measured using photorefraction and 1310-nm spectral-domain optical coherence tomography, respectively. Scleral RNA samples from FD and fellow control eyes were processed for microarray assay. Statistical analyses were performed using National Institute of Aging array analysis tool; group comparisons were made using ANOVA, and gene ontologies were identified using software available on the Web. Findings were confirmed using quantitative PCR in a separate group of mice (n = 7).ResultsForm-deprived eyes showed myopic shifts in refractive error (-2.02 ± 0.47 D; P < 0.01). Comparison of the scleral RNA profiles of test eyes with those of control eyes revealed 54 differentially expressed miRNAs and 261 mRNAs fold-change >1.25 (maximum fold change = 1.63 and 2.7 for miRNAs and mRNAs, respectively) (P < 0.05; minimum, P = 0.0001). Significant ontologies showing gene over-representation (P < 0.05) included intermediate filament organization, scaffold protein binding, detection of stimuli, calcium ion, G protein, and phototransduction. Significant differential expression of Let-7a and miR-16-2, and Smok4a, Prph2, and Gnat1 were confirmed.ConclusionsScleral mi- and mRNAs showed differential expression linked to myopia, supporting the involvement of miRNAs in eye growth regulation. The observed general trend of relatively small fold-changes suggests a tightly controlled, regulatory mechanism for scleral gene expression.
Project description:PurposeScleral extracellular matrix (ECM) remodeling and weakened scleral stiffness are characteristic of myopia. The purpose of this study was to investigate the precise underlying mechanisms of scleral remodeling regulated by mechanical signals emanating from the ECM.MethodsThe expression and regulation of YES-associated protein (YAP) were confirmed in human samples or guinea pig myopia models by Western blot (WB) or ELISA. To mimic the biomechanical microenvironment associated with myopia, stiff (50 kPa) and soft (8 kPa) substrates were established. The underlying mechanisms were further investigated by quantitative real-time RT-PCR, WB, and fluorescence staining in cells treated with siRNAs, plasmids or inhibitors. In vivo, a YAP activator, inhibitor and F-actin polymerization facilitator were applied to evaluate their therapeutic significance for myopia.ResultsOur findings revealed that YAP expression is decreased in the sclera of guinea pigs and humans with myopia. Under mechanical stimuli, YAP functions as a mediator, transducing mechanical signals and modulating collagen expression. Furthermore, integrin α1β1 acts as a regulator of YAP and operates through modification of the F-actin cytoskeleton. Specifically, in response to mechanical forces, integrin α1β1 modulates F-actin restructuring. This modified actin cytoskeletal architecture subsequently facilitates the nuclear translocation of YAP, ultimately leading to the suppression of COL1A1 expression.ConclusionsOur results suggest that the integrin α1β1-F-actin-YAP-COL1A1 axis constitutes a vital regulatory mechanism intrinsically associated with the pathogenesis of myopia.
Project description:PurposeApolipoprotein A1 (APOA1) is a potential crucial protein and treatment goal for pathological myopia in humans. This study set out to discover the function of APOA1 in scleral remodeling in myopia and its underlying mechanisms.MethodsA myopic cell model was induced using hypoxia. Following loss- and gain-of function experiments, the expression of the myofibroblast transdifferentiation-related and collagen production-related factors Forkhead box M1 (FOXM1), APOA1, and methyltransferase-like 3 (METTL3) in the myopic cell model was examined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting. The proliferation and apoptosis were determined by Cell Counting Kit-8 assay and flow cytometry, respectively. Chromatin immunoprecipitation (ChIP) was employed to examine FOXM1 enrichment in the METTL3 promoter, methylated RNA immunoprecipitation (Me-RIP) to examine the N6-methyladenosine (m6A) modification level of APOA1, and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to examine the binding between METTL3 and APOA1.ResultsHypoxia-induced human scleral fibroblasts (HSFs) had high APOA1 and FOXM1 expression and low METTL3 expression. FOXM1 knockdown elevated METTL3 expression and downregulated APOA1 expression. FOXM1 was enriched in METTL3 promoter. APOA1 or FOXM1 knockdown or METTL3 overexpression reversed the hypoxia-induced elevation in vinculin, paxillin, and α-smooth muscle actin (α-SMA) levels and apoptosis and the reduction in collagen, type I, alpha 1 (COL1A1) level and cell proliferation in HSFs. METTL3 or YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) knockdown or APOA1 overexpression reversed the impacts of FOXM1 knockdown on vinculin, paxillin, α-SMA, and COL1A1 expression and cell proliferation and apoptosis.ConclusionsFOXM1 elevated the m6A methylation level of APOA1 by repressing METTL3 transcription and enhanced APOA1 mRNA stability and transcription by reducing the YTHDF2-recognized m6A methylated transcripts.
Project description:Myopia is one of the most common eye diseases in children and adolescents worldwide, and scleral remodeling plays a role in myopia progression. However, the identity of the initiating factors and signaling pathways that induce myopia-associated scleral remodeling is still unclear. This study aimed to identify biomarkers of scleral remodeling to elucidate the pathogenesis of myopia. The gene expression omnibus (GEO) and comparative toxicogenomics database (CTD) mining were used to identify the miRNA-mRNA regulatory network related to scleral remodeling in myopia. Real-time quantitative PCR (RT-qPCR), Western blot, immunofluorescence, H&E staining, Masson staining, and flow cytometry were used to detect the changes in the FOXO signaling pathway, fibrosis, apoptosis, cell cycle, and other related factors in scleral remodeling. miR-15b-5p/miR-379-3p can regulate the FOXO signaling pathway. Confirmatory studies confirmed that the axial length of the eye was significantly increased, the scleral thickness was thinner, the levels of miR-15b-5p, miR-379-3p, PTEN, p-PTEN, FOXO3a, cyclin-dependent kinase (CDK) inhibitor 1B (CDKN1B) were increased, and the levels of IGF1R were decreased in Len-induced myopia (LIM) group. CDK2, cyclin D1 (CCND1), and cell cycle block assessed by flow cytometry indicated G1/S cell cycle arrest in myopic sclera. The increase in BAX level and the decrease in BCL-2 level indicated enhanced apoptosis of the myopic sclera. In addition, we found that the levels of transforming growth factor-β1 (TGF-β1), collagen type 1 (COL-1), and α-smooth muscle actin (α-SMA) were decreased, suggesting scleral remodeling occurred in myopia. miR-15b-5p/miR-379-3p can regulate the scleral cell cycle and apoptosis through the IGF1R/PTEN/FOXO signaling pathway, thereby promoting scleral remodeling in myopia progression.
Project description:Introduction: In human eyes, ocular enlargement/ growth, reflects active scleral extracellular matrix remodeling. miRNAs are small non-coding RNAs that regulate gene expression by base pairing with target sequences, and serve as nodes of signaling networks. We hypothesized that the sclera, like most tissues, expresses miRNAs, some of which modulate genes regulating ocular growth. In this study, the scleral miRNA expression profile of rapidly growing human fetal eyes was compared with that of stable adult donor eyes using high-throughput microarray and quantitative PCR analyses. Results: Human sclera expressed several miRNAs. Microarray comparison of adult and fetal samples revealed many to be differentially expressed (p<0.01, min p= 6.5x10^11), with increased expression of collagen specific mir-214, let-7c, let-7e, mir-103, mir-107, and mir-98 in fetal sclera subsequently confirmed (1.5 to 4 fold changes, p<0.01). For both adult and fetal samples, no significant differences in miRNA expression profiles of sclera from posterior and peripheral ocular regions were observed. Conclusion: This is the first study to catalogue miRNA expression in human sclera. The sclera expresses several miRNAs, some of which show age-related differential regulation, higher in rapidly growing fetal eyes, consistent with a role in ocular growth regulation. These findings may be useful for linking scleral miRNA expression with potential manipulation in disorders such as scleral ectasia/ axial myopia.
Project description:PurposeOcular all-trans retinoic acid (atRA) levels are influenced by visual cues, and exogenous atRA has been shown to increase eye size in chickens and guinea pigs. However, it is not clear whether atRA induces myopic axial elongation via scleral changes. Here, we test the hypothesis that exogenous atRA will induce myopia and alter scleral biomechanics in the mouse.MethodsMale C57BL/6J mice were trained to voluntarily ingest atRA + vehicle (1% atRA in sugar, 25 mg/kg) (RA: n = 16 animals) or vehicle only (Ctrl: n = 14 animals). Refractive error (RE) and ocular biometry were measured at baseline and after 1 and 2 weeks of daily atRA treatment. Eyes were used in ex vivo assays to measure scleral biomechanics (unconfined compression: n = 18), total scleral sulfated glycosaminoglycan (sGAG) content (dimethylmethylene blue: n = 23), and specific sGAGs (immunohistochemistry: n = 18).ResultsExogenous atRA caused myopic RE and larger vitreous chamber depth (VCD) to develop by 1 week (RE: -3.7 ± 2.2 diopters [D], P < 0.001; VCD: +20.7 ± 15.1 µm, P < 0.001), becoming more severe by 2 weeks (RE: -5.7 ± 2.2 D, P < 0.001; VCD: +32.3 ± 25.8 µm, P < 0.001). The anterior eye biometry was unaffected. While scleral sGAG content was not measurably affected, scleral biomechanics were significantly altered (tensile stiffness: -30% ± 19.5%, P < 0.001; permeability: +60% ± 95.3%, P < 0.001).ConclusionsIn mice, atRA treatment results in an axial myopia phenotype. Eyes developed myopic RE and larger VCD without the anterior eye being affected. The decrease in stiffness and increase in permeability of the sclera are consistent with the form-deprivation myopia phenotype.
Project description:PurposeBone morphogenetic protein 2 (BMP-2) is a member of the main subgroup of bone morphogenetic proteins within the transforming growth factor-beta superfamily. BMP-2 is involved in numerous cellular functions including development, cell proliferation, apoptosis, and extracellular matrix synthesis. We examined BMP-2 expression in human scleral fibroblasts (HSF) and assessed the effects of recombinant human BMP-2 (rhBMP-2) on HSF proliferation, matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of metalloproteinase-2 (TIMP-2).MethodsWe used confocal fluorescence microscopy (CFM) to study BMP-2 distribution in HSF cells and frozen human scleral sections. The influence of rhBMP-2 on cell proliferation at different concentrations (0 ng/ml, 1 ng/ml, 10 ng/ml, and 100 ng/ml) was evaluated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effects of rhBMP-2 on the cell cycle were investigated with flow cytometric analysis. Reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to examine MMP-2 and TIMP-2 mRNAs and secreted proteins in HSF that were incubated with rhBMP-2.ResultsBMP-2 protein expression from human sclera was confirmed by CFM. Cell proliferation was significantly increased with 100 ng/ml rhBMP-2 in a time-dependent manner (p<0.05). The HSF cell cycle moved to the S and S+G(2)M phases after rhBMP-2 stimulation at 100 ng/ml compared to normal cells (p<0.05). TIMP-2 mRNA levels were significantly increased in HSF incubated for 24 h with 100 ng/ml rhBMP-2 (p<0.01). A 48 h incubation with 10 ng/ml or 100 ng/ml rhBMP-2 resulted in significantly increased TIMP-2 mRNA and protein expression and significantly decreased MMP-2 mRNA expression (p<0.01) while MMP-2 protein expression significantly decreased at 100 ng/ml rhBMP-2 (p<0.01).ConclusionsHuman sclera fibroblasts expressed BMP-2, which promoted cell proliferation, and elicited changes in MMP-2 and TIMP-2, might influence extracellular matrix synthesis.
Project description:Emmetropization, a natural process of ocular elongation, is closely associated with scleral remodeling. The Fibroblast growth factor-2 (FGF-2) was reported involved in scleral remodeling in myopia models. Herein, we aimed to investigate the role of scleral fibroblast-to-myofibroblast differentiation and FGF-2 in scleral remodeling during maturation. Our findings revealed that the posterior scleral fibroblasts (SFs) from mature guinea pigs exhibit increased stiffness compared to those from young guinea pigs. Moreover, mature SFs displayed decreased cell proliferation but increased levels of α-SMA, matrix metalloproteinase 2 (MMP2), and collagen 1, when compared to young SFs. Additionally, the mRNA expression of scleral Fgf-2, Fgf receptor 1 (Fgfr1), Fgfr2, Fgfr3, and Fgfr4 was increased in mature SFs. Notably, exogenous FGF-2 showed increased cell proliferation and led to decreased expression of α-SMA, MMP2, and collagen 1 in mature SFs. Overall, our findings highlight the influence of maturation on SFs from posterior scleral shells, resulting in increased stiffness and the manifestation of fibroblast-to-myofibroblast differentiation during development. Exogenous FGF-2 increased cell proliferation and reversed the age-related fibroblast-to-myofibroblast differentiation, suggesting a potential role of FGF-2 in regulating scleral remodeling.