C-Term Faraday Rotation in Low Symmetry tert-Butyl Substituted Polyferroceniums.
Ontology highlight
ABSTRACT: Molecular thin films are currently being investigated as candidate materials to replace conventional atomistic inorganic crystal-based Faraday rotators. High symmetry paramagnetic species have been reported to exhibit large Verdet constants via magnetic field splitting of degenerate ground states. However, lower symmetry open-shell species have not been extensively studied. Herein, we report the Faraday rotation of two poly di-tert-butylferroceniums with diphenylsilane and vinylene linkers. Thin films of oxidized poly[(1,1'-di-tert-butylferrocenyl)diphenylsilane] [poly(tBu2fc-SiPh2)] displayed a 30% increase in maximum Verdet constant relative to the previously reported decamethylferrocenium/PMMA composite, with Verdet constants of -4.52 × 104 deg T-1 m-1 at 730 nm and 4.46 × 104 deg T-1 m-1 at 580 nm. When a sp2-type linker was used, as with the oxidized poly(1,1'-di-tert-butyl-ferrocenylene)vinylene [poly(tBu2fc-C═C)], negligible Faraday rotation was observed. Hence, Faraday rotation can be maintained when molecular symmetry is broken, however orbital symmetry breaking in optical transitions of interest leads to a significant loss in magneto-optical activity.
SUBMITTER: Delage-Laurin L
PROVIDER: S-EPMC10868589 | biostudies-literature | 2023 May
REPOSITORIES: biostudies-literature
ACCESS DATA