Project description:Lung adenocarcinoma (LUAD), the most common type of lung cancer, is a leading cause of cancer-related mortality. NT5E, an ecto-5'-nucleotidase enzyme, has been implicated in cancer progression, particularly in efferocytosis. Despite its potential involvement, the prognostic significance of NT5E and relationship with immune cell infiltration in LUAD have not been extensively explored. In this study, we performed a comprehensive analysis to elucidate the expression patterns of NT5E and its prognostic implications in LUAD using data from diverse public databases. Multiple computational algorithms, including CIBERSORT, ESTIMATE, and xCell, were employed to assess the correlation between NT5E expression and immune cell infiltration. We found that NT5E was significantly overexpressed at both the mRNA and protein levels in LUAD tissues. Elevated NT5E expression was significantly linked to multiple clinicopathological factors, including metastasis and pathological stage, and served as a strong predictor of poor prognosis in LUAD patients. Gene Set Enrichment Analysis (GSEA) indicated that NT5E plays a crucial role in regulating immune responses, as evidenced by differential gene expression associated with NT5E levels. A strong positive correlation was observed between NT5E expression and the presence of immune cells, including dendritic cells, macrophages, and CD4+ T cells, as well as the expression of various immune cell markers, suggesting that NT5E may influence the prognosis of LUAD patients by regulating immune cell infiltration. Additionally, drug sensitivity analysis highlights the potential of selumetinib and PD318088, both MEK1/2 inhibitors, to target NT5E in LUAD treatment, suggesting their use as single agents or in combination with other therapies. Collectively, these findings establish NT5E as a promising prognostic biomarker and therapeutic target in LUAD, particularly in the context of immune cell infiltration.
Project description:BackgroundThe biological function of distal-less homeobox 1 (DLX1) in lung adenocarcinoma (LUAD) remains unclear, despite a growing body of evidence that DLX1 is involved in the initiation and progression of various tumors.MethodsThis study explored and confirmed the prognostic and immunologic roles of DLX1 in LUAD via bioinformatic analysis and cellular functional validation. MethSurv was used to analyze the DNA methylation levels of DLX1 and the prognostic value of CpG islands. DLX1 mutation rates and prognoses between patients with and without the mutated DLX1 gene were analyzed by cBioPortal. Finally, cellular functional assays were used to investigate the effect of DLX1 on LUAD cells.ResultsOur results showed that DLX1 mRNA expression was significantly upregulated in LUAD. High DLX1 expression or promoter methylation was associated with worse prognosis, which confirmed DLX1 as an independent prognostic factor in LUAD. The level of multiple immune cell infiltration was significantly associated with DLX1 expression. Genes in the high DLX1 expression group were mainly enriched in cell cycle checkpoint, DNA replication, DNA repair, Fceri-mediated MAPK activation, TP53 activity regulation, and MET activation of PTK2-regulated signaling pathways. Cellular functional assays showed that the knockdown of DLX1 inhibited the proliferation, migration, and invasion of LUAD cells.ConclusionOur study identified DLX1 as a potential diagnostic and prognostic biomarker, and a promising therapeutic target in LUAD.
Project description:It is well established that genes associated with cell death can serve as prognostic markers for patients with cancer. Programmed cell death (PCD) is known to play a role in cancer cell apoptosis and antitumor immunity. With the continuous discovery of new forms of PCD, the roles of PCD in lung adenocarcinoma (LUAD) require ongoing evaluation. In the present study, mRNA expression data and clinical information associated with 15 forms of PCD were extracted from publicly available databases and systematically analyzed. Utilizing these data, a robust risk prediction model was established that incorporates six PCD-related genes (PRGs). Datasets from the Gene Expression Omnibus database were employed to validate the six genes exhibiting risk-associated characteristics. The PRG-based model reliably predicted the prognosis of patients with LUAD, with the high-risk group showing a poor prognosis, reduced levels of immune infiltration molecules and diminished expression of human leukocyte antigens. Additionally, the relationships among PRGs, somatic mutations, tumor stemness index and immune infiltration were assessed. Based on these risk characteristics, a nomogram was constructed, patient stratification was performed, small-molecule drug candidates were predicted, and somatic mutations and chemotherapy responses were analyzed. Furthermore, reverse transcription-quantitative PCR was used to assess the expression of PDGs in vitro, and the critical role of brain-derived neurotrophic factor in LUAD development was identified through Mendelian randomization, gene knockdown, wound healing, western blot and colony formation assays. These findings offer new insights into the development of targeted therapies for LUAD, particularly in patients with high BDNF expression.
Project description:BackgroundOverexpression of NPM1 can promote the growth and proliferation of various tumor cells. However, there are few studies on the comprehensive analysis of NPM1 in lung adenocarcinoma (LUAD).MethodsTCGA and GEO data sets were used to analyze the expression of NPM1 in LUAD and clinicopathological analysis. The GO/KEGG enrichment analysis of NPM1 co-expression and gene set enrichment analysis (GSEA) were performed using R software package. The relationship between NPM1 expression and LUAD immune infiltration was analyzed using TIMER, GEPIA database and TCGA data sets, and the relationship between NPM1 expression level and LUAD m6A modification and glycolysis was analyzed using TCGA and GEO data sets.ResultsNPM1 was overexpressed in a variety of tumors including LUAD, and the ROC curve showed that NPM1 had a certain accuracy in predicting the outcome of tumors and normal samples. The expression level of NPM1 in LUAD is significantly related to tumor stage and prognosis. The GO/KEGG enrichment analysis indicated that NPM1 was closely related to translational initiation, ribosome, structural constituent of ribosome, ribosome, Parkinson disease, and RNA transport. GSEA showed that the main enrichment pathway of NPM1-related differential genes was mainly related to mTORC1 mediated signaling, p53 hypoxia pathway, signaling by EGFR in cancer, antigen activates B cell receptor BCR leading to generation of second messengers, aerobic glycolysis and methylation pathways. The analysis of TIMER, GEPIA database and TCGA data sets showed that the expression level of NPM1 was negatively correlated with B cells and NK cells. The TCGA and GEO data sets analysis indicated that the NPM1 expression was significantly correlated with one m6A modifier related gene (YTHDF2) and five glycolysis related genes (ENO1, HK2, LDHA, LDHB and SLC2A1).ConclusionNPM1 is a prognostic biomarker involved in immune infiltration of LUAD and associated with m6A modification and glycolysis. NPM1 can be used as an effective target for diagnosis and treatment of LUAD.
Project description:ObjectiveThis study sought to explore the clinical value of matrix metalloproteinases 12 (MMP12) in multiple cancers, including lung adenocarcinoma (LUAD).MethodsUsing >10,000 samples, this retrospective study demonstrated the first pan-cancer analysis of MMP12. The expression of MMP12 between cancer groups and their control groups was analyzed using Wilcoxon rank-sum tests. The clinical significance of MMP12 expression in multiple cancers was assessed using receiver operating characteristic curves, Kaplan-Meier curves, and univariate Cox analysis. A further LUAD-related analysis based on 4565 multi-center and in-house samples was performed to verify the findings regarding MMP12 in pan-cancer analysis partly.ResultsMMP12 mRNA is highly expressed in 13 cancers compared to their controls, and the MMP12 protein level is elevated in some of these cancers (e.g., colon adenocarcinoma) (P < .05). MMP12 expression makes it feasible to distinguish 21 cancer tissues from normal tissues (AUC = 0.86). A high MMP12 expression is a prognosis risk factor in eight cancers, such as adrenocortical carcinoma (hazard ratio >1, P < .05). The elevated MMP12 expression is also a prognosis protective factor in breast-invasive carcinoma and colon adenocarcinoma (hazard ratio <1, P < .05). Some pan-cancer findings regarding MMP12 are verified in LUAD-MMP12 expression is upregulated in LUAD at both the mRNA and protein levels (P < .05), has the potential to distinguish LUAD with considerable accuracy (AUC = .91), and plays a risk prognosis factor for patients with the disease (P < .05).ConclusionsMMP12 is highly expressed in most cancers and may serve as a novel biomarker for the prediction and prognosis of numerous cancers.
Project description:Background Solute carrier organic anion transporter family member 4A1 (SLCO4A1), a member of solute carrier organic anion family, is a key gene regulating bile metabolism, organic anion transport, and ABC transport. However, the association of SLCO4A1 with prognosis and tumor immune infiltration in colon adenocarcinoma (COAD) remains indistinct. Methods Firstly, we explored the expression level of SLCO4A1 in COAD via GEPIA, Oncomine, and UALCAN databases. Secondly, we used the Kaplan-Meier plotter and PrognoScan databases to investigate the effect of SLCO4A1 on prognosis in COAD patients. In addition, the correlation between SLCO4A1 and tumor immune infiltration was studied by using TIMER and TISIDB databases. Results Our results showed that SLCO4A1 was overexpressed in COAD tissues. At the same time, our study showed that high expression of SLCO4A1 was associated with poor overall survival, disease-free survival, and disease-specific survival in COAD patients. The expression level of SLCO4A1 was negatively linked to the infiltrating levels of B cells, CD8+ T cells, and dendritic cells in COAD. Moreover, the expression of SLCO4A1 was significantly correlated with numerous immune markers in COAD. Conclusions These results indicated that SLCO4A1 could be associated with the prognosis of COAD patients and the levels of tumor immune infiltration. Our study suggested that SLCO4A1 could be a valuable biomarker for evaluating prognosis and tumor immune infiltration in COAD patients.
Project description:BackgroundCurrent studies on the role of ARHGAP39 mainly focused on its effect on neurodevelopment. However, there are few studies on the comprehensive analysis of ARHGAP39 in breast cancer.MethodsARHGAP39 expression level was analyzed based on the Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression Project (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database and validated by qPCR in various cell lines and tumor tissues. The prognostic value was analyzed using Kaplan-Meier curve analysis. CCK-8 and transwell assays were conducted to identify the biological function of ARHGAP39 in tumorigenesis. Signaling pathways related to ARHGAP39 expression were identified by the GO and KEGG enrichment analysis and gene set enrichment analysis (GSEA). The correlations between ARHGAP39 and cancer immune infiltrates were investigated via TIMER, CIBERSORT, ESTIMATE and tumor-immune system interactions database (TISIDB).ResultsARHGAP39 was overexpressed in breast cancer and associated with poor survival outcomes. In vitro experiments revealed that ARHGAP39 could facilitate the proliferation, migration, and invasion capability of breast cancer cells. GSEA analysis showed that the main enrichment pathways of ARHGAP39 was immunity-related pathways. Considering the immune infiltration level, ARHGAP39 was negatively associated with infiltrating levels of CD8 + T cell and macrophage, and positively associated with CD4 + T cell. Furthermore, ARHGAP39 was significantly negatively correlated with immune score, stromal score, and ESTIMATE score.ConclusionsOur findings suggested that ARHGAP39 can be used as a potential therapeutic target and prognostic biomarker in breast cancer. ARHGAP39 was indeed a determinant factor of immune infiltration.
Project description:Tumor protein D52-like 2 (TPD52L2) belongs to the members of the TPD52 family. TPD52L2 was reported to regulate proliferation and apoptosis in cancer cells. However, its role in lung adenocarcinoma (LUAD) was uncertain. We evaluated the expression, methylation, copy number alteration, and prognostic significance of TPD52L2 using RNA-seq data from The Cancer Genome Atlas (TCGA). Enrichment analysis of TPD52L2 was conducted using the R package "clusterProfiler." We further assessed the association between TPD52L2 and immune cell infiltration level, immunosuppressive genes, and tumor mutational burden (TMB). The difference of gene mutant frequency in high- and low-TPD52L2 groups was also analyzed. The results showed that TPD52L2 was over-expressed and predicted worse survival status in LUAD. We also found that TPD52L2 expression was positively associated with the infiltration levels of immunosuppressive cells, such as regulatory T cells (Tregs) and tumor-associated macrophages (TAMs), and negatively correlated with immune killer cells, such as CD8+ T and NK cells in pan-cancer, including LUAD. In addition, TPD52L2 expression was associated with immunosuppressive genes and TMB. High expression of TPD52L2 was with more mutant frequency of TP53. In summary, our results show that TPD52L2 is an oncogene and a potential prognostic biomarker in LUAD. High TPD52L2 expression is a possible indicator of immune infiltration and associated with tumor immunosuppressive status in LUAD.