Project description:IntroductionMachine learning (ML) helps diagnose the mild cognitive impairment-Alzheimer's disease (MCI-AD) spectrum. However, ML is fed with data unavailable in standard clinical practice. Thus, we tested a novel multi-step ML approach to predict cognitive worsening.MethodsWe selected cognitively normal and MCI participants from the Alzheimer's Disease Neuroimaging Initiative dataset and categorized them on total tau/amyloid beta 1-42 ratios. ML was applied to predict the 3-year conversion with standard clinical data (SCD), assess the model's accuracy, and identify the role of cerebrospinal fluid (CSF) biomarkers in this approach. Shapley Additive Explanations (SHAP) analysis was carried out to explore the automated decisional process.ResultsThe model achieved 84% accuracy across the entire cohort, 86% in patients with negative CSF, and 88% in individuals with AD-like CSF. SHAP analysis identified differences between CSF-positive and -negative patients in predictors of conversion and cut-offs.ConclusionsThe approach yielded good prediction accuracy using SCD. However, CSF-based categorizations are needed to improve predictive accuracy.HighlightsMachine learning algorithms can predict cognitive decline with standard and routinely used clinical data. Classification according to cerebrospinal fluid biomarkers enhances prediction accuracy. Different cut-offs could be applied to neuropsychological tests to predict conversion.
Project description:BackgroundCox proportional hazards regression models and machine learning models are widely used for predicting the risk of dementia. Existing comparisons of these models have mostly been based on empirical datasets and have yielded mixed results. This study examines the accuracy of various machine learning and of the Cox regression models for predicting time-to-event outcomes using Monte Carlo simulation in people with mild cognitive impairment (MCI).MethodsThe predictive accuracy of nine time-to-event regression and machine learning models were investigated. These models include Cox regression, penalized Cox regression (with Ridge, LASSO, and elastic net penalties), survival trees, random survival forests, survival support vector machines, artificial neural networks, and extreme gradient boosting. Simulation data were generated using study design and data characteristics of a clinical registry and a large community-based registry of patients with MCI. The predictive performance of these models was evaluated based on three-fold cross-validation via Harrell's concordance index (c-index), integrated calibration index (ICI), and integrated brier score (IBS).ResultsCox regression and machine learning model had comparable predictive accuracy across three different performance metrics and data-analytic conditions. The estimated c-index values for Cox regression, random survival forests, and extreme gradient boosting were 0.70, 0.69 and 0.70, respectively, when the data were generated from a Cox regression model in a large sample-size conditions. In contrast, the estimated c-index values for these models were 0.64, 0.64, and 0.65 when the data were generated from a random survival forest in a large sample size conditions. Both Cox regression and random survival forest had the lowest ICI values (0.12 for a large sample size and 0.18 for a small sample size) among all the investigated models regardless of sample size and data generating model.ConclusionCox regression models have comparable, and sometimes better predictive performance, than more complex machine learning models. We recommend that the choice among these models should be guided by important considerations for research hypotheses, model interpretability, and type of data.
Project description:BackgroundThe mobile screening test system for mild cognitive impairment (mSTS-MCI) was developed and validated to address the low sensitivity and specificity of the Montreal Cognitive Assessment (MoCA) widely used clinically.ObjectiveThis study was to evaluate the efficacy machine learning algorithms based on the mSTS-MCI and Korean version of MoCA.MethodIn total, 103 healthy individuals and 74 patients with MCI were randomly divided into training and test data sets, respectively. The algorithm using TensorFlow was trained based on the training data set, and then its accuracy was calculated based on the test data set. The cost was calculated via logistic regression in this case.ResultPredictive power of the algorithms was higher than those of the original tests. In particular, the algorithm based on the mSTS-MCI showed the highest positive-predictive value.ConclusionThe machine learning algorithms predicting MCI showed the comparable findings with the conventional screening tools.
Project description:BackgroundEarly signs of Alzheimer disease (AD) are difficult to detect, causing diagnoses to be significantly delayed to time points when brain damage has already occurred and current experimental treatments have little effect on slowing disease progression. Tracking cognitive decline at early stages is critical for patients to make lifestyle changes and consider new and experimental therapies. Frequently studied biomarkers are invasive and costly and are limited for predicting conversion from normal to mild cognitive impairment (MCI).ObjectiveThis study aimed to use data collected from fitness trackers to predict MCI status.MethodsIn this pilot study, fitness trackers were worn by 20 participants: 12 patients with MCI and 8 age-matched controls. We collected physical activity, heart rate, and sleep data from each participant for up to 1 month and further developed a machine learning model to predict MCI status.ResultsOur machine learning model was able to perfectly separate between MCI and controls (area under the curve=1.0). The top predictive features from the model included peak, cardio, and fat burn heart rate zones; resting heart rate; average deep sleep time; and total light activity time.ConclusionsOur results suggest that a longitudinal digital biomarker differentiates between controls and patients with MCI in a very cost-effective and noninvasive way and hence may be very useful for identifying patients with very early AD who can benefit from clinical trials and new, disease-modifying therapies.
Project description:BackgroundClinical markers of cognitive decline in Parkinson's disease (PD) encompass several mental non-motor symptoms such as hallucinations, apathy, anxiety, and depression. Furthermore, freezing of gait (FOG) and specific gait alterations have been associated with cognitive dysfunction in PD. Finally, although low cerebrospinal fluid levels of amyloid-β42 have been found to predict cognitive decline in PD, hitherto PET imaging of amyloid-β (Aβ) failed to consistently demonstrate the association between Aβ plaques deposition and mild cognitive impairment in PD (PD-MCI).AimFinding significant features associated with PD-MCI through a machine learning approach.Patients and methodsPatients were assessed with an extensive clinical and neuropsychological examination. Clinical evaluation included the assessment of mental non-motor symptoms and FOG using the specific items of the MDS-UPDRS I and II. Based on the neuropsychological examination, patients were classified as subjects without and with MCI (noPD-MCI, PD-MCI). All patients were evaluated using a motion analysis system. A subgroup of PD patients also underwent amyloid PET imaging. PD-MCI and noPD-MCI subjects were compared with a univariate statistical analysis on demographic data, clinical features, gait analysis variables, and amyloid PET data. Then, machine learning analysis was performed two times: Model 1 was implemented with age, clinical variables (hallucinations/psychosis, depression, anxiety, apathy, sleep problems, FOG), and gait features, while Model 2, including only the subgroup performing PET, was implemented with PET variables combined with the top five features of the former model.ResultsSeventy-five PD patients were enrolled (33 PD-MCI and 42 noPD-MCI). PD-MCI vs. noPD-MCI resulted in older and showed worse gait patterns, mainly characterized by increased dynamic instability and reduced step length; when comparing amyloid PET data, the two groups did not differ. Regarding the machine learning analyses, evaluation metrics were satisfactory for Model 1 overcoming 80% for accuracy and specificity, whereas they were disappointing for Model 2.ConclusionsThis study demonstrates that machine learning implemented with specific clinical features and gait variables exhibits high accuracy in predicting PD-MCI, whereas amyloid PET imaging is not able to increase prediction. Additionally, our results prompt that a data mining approach on certain gait parameters might represent a reliable surrogate biomarker of PD-MCI.
Project description:PurposeAmnestic mild cognitive impairment (aMCI) is a transitional state between normal aging and Alzheimer's disease (AD). However, not all aMCI patients are observed to convert to AD dementia. Therefore, developing a predictive algorithm for the conversion of aMCI to AD dementia is important. Parametric methods, such as logistic regression, have been developed; however, it is difficult to reflect complex patterns, such as non-linear relationships and interactions between variables. Therefore, this study aimed to improve the predictive power of aMCI patients' conversion to dementia by using an interpretable machine learning (IML) algorithm and to identify the factors that increase the risk of individual conversion to dementia in each patient.MethodsWe prospectively recruited 705 patients with aMCI who had been followed-up for at least 3 years after undergoing baseline neuropsychological tests at the Samsung Medical Center between 2007 and 2019. We used neuropsychological tests and apolipoprotein E (APOE) genotype data to develop a predictive algorithm. The model-building and validation datasets were composed of data of 565 and 140 patients, respectively. For global interpretation, four algorithms (logistic regression, random forest, support vector machine, and extreme gradient boosting) were compared. For local interpretation, individual conditional expectations (ICE) and SHapley Additive exPlanations (SHAP) were used to analyze individual patients.ResultsAmong the four algorithms, the extreme gradient boost model showed the best performance, with an area under the receiver operating characteristic curve of 0.852 and an accuracy of 0.807. Variables, such as age, education, the scores of visuospatial and memory domains, the sum of boxes of the Clinical Dementia Rating scale, Mini-Mental State Examination, and APOE genotype were important features for creating the algorithm. Through ICE and SHAP analyses, it was also possible to interpret which variables acted as strong factors for each patient.ConclusionWe were able to propose a predictive algorithm for each aMCI individual's conversion to dementia using the IML technique. This algorithm is expected to be useful in clinical practice and the research field, as it can suggest conversion with high accuracy and identify the degree of influence of risk factors for each patient.
Project description:Mild cognitive impairment (MCI) is cognitive decline that can indicate future risk of Alzheimer's disease (AD). We developed and validated a machine learning algorithm (MLA), based on a gradient-boosted tree ensemble method, to analyze phenotypic data for individuals 55-88 years old (n = 493) diagnosed with MCI. Data were analyzed within multiple prediction windows and averaged to predict progression to AD within 24-48 months. The MLA outperformed the mini-mental state examination (MMSE) and three comparison models at all prediction windows on most metrics. Exceptions include sensitivity at 18 months (MLA and MMSE each achieved 0.600); and sensitivity at 30 and 42 months (MMSE marginally better). For all prediction windows, the MLA achieved AUROC ≥ 0.857 and NPV ≥ 0.800. With averaged data for the 24-48-month lookahead timeframe, the MLA outperformed MMSE on all metrics. This study demonstrates that machine learning may provide a more accurate risk assessment than the standard of care. This may facilitate care coordination, decrease healthcare expenditures, and maintain quality of life for patients at risk of progressing from MCI to AD.
Project description:Background: Mild cognitive impairment (MCI) is a transitional stage between normal aging and probable Alzheimer's disease. It is of great value to screen for MCI in the community. A novel machine learning (ML) model is composed of electroencephalography (EEG), eye tracking (ET), and neuropsychological assessments. This study has been proposed to identify MCI subjects from normal controls (NC). Methods: Two cohorts were used in this study. Cohort 1 as the training and validation group, includes184 MCI patients and 152 NC subjects. Cohort 2 as an independent test group, includes 44 MCI and 48 NC individuals. EEG, ET, Neuropsychological Tests Battery (NTB), and clinical variables with age, gender, educational level, MoCA-B, and ACE-R were selected for all subjects. Receiver operating characteristic (ROC) curves were adopted to evaluate the capabilities of this tool to classify MCI from NC. The clinical model, the EEG and ET model, and the neuropsychological model were compared. Results: We found that the classification accuracy of the proposed model achieved 84.5 ± 4.43% and 88.8 ± 3.59% in Cohort 1 and Cohort 2, respectively. The area under curve (AUC) of the proposed tool achieved 0.941 (0.893-0.982) in Cohort 1 and 0.966 (0.921-0.988) in Cohort 2, respectively. Conclusions: The proposed model incorporation of EEG, ET, and neuropsychological assessments yielded excellent classification performances, suggesting its potential for future application in cognitive decline prediction.
Project description:There is a limited evaluation of an independent linguistic battery for early diagnosis of Mild Cognitive Impairment due to Alzheimer's disease (MCI-AD). We hypothesized that an independent linguistic battery comprising of only the language components or subtests of popular test batteries could give a better clinical diagnosis for MCI-AD compared to using an exhaustive battery of tests. As such, we combined multiple clinical datasets and performed Exploratory Factor Analysis (EFA) to extract the underlying linguistic constructs from a combination of the Consortium to Establish a Registry for Alzheimer's disease (CERAD), Wechsler Memory Scale (WMS) Logical Memory (LM) I and II, and the Boston Naming Test. Furthermore, we trained a machine-learning algorithm that validates the clinical relevance of the independent linguistic battery for differentiating between patients with MCI-AD and cognitive healthy control individuals. Our EFA identified ten linguistic variables with distinct underlying linguistic constructs that show Cronbach's alpha of 0.74 on the MCI-AD group and 0.87 on the healthy control group. Our machine learning evaluation showed a robust AUC of 0.97 when controlled for age, sex, race, and education, and a clinically reliable AUC of 0.88 without controlling for age, sex, race, and education. Overall, the linguistic battery showed a better diagnostic result compared to the Mini-Mental State Examination (MMSE), Clinical Dementia Rating Scale (CDR), and a combination of MMSE and CDR.
Project description:BackgroundAlzheimer's disease (AD) is a neurodegenerative disorder characterised by cognitive decline, behavioural and psychological symptoms of dementia (BPSD) and impairment of activities of daily living (ADL). Early differentiation of AD from mild cognitive impairment (MCI) is necessary.MethodsA total of 458 patients newly diagnosed with AD and MCI were included. Eleven batteries were used to evaluate ADL, BPSD and cognitive function (ABC). Machine learning approaches including XGboost, classification and regression tree, Bayes, support vector machines and logical regression were used to build and verify the new tool.ResultsThe Alzheimer's Disease Assessment Scale (ADAS-cog) word recognition task showed the best importance in judging AD and MCI, followed by correct numbers of auditory verbal learning test delay recall and ADAS-cog orientation. We also provided a selected ABC-Scale that covered ADL, BPSD and cognitive function with an estimated completion time of 18 min. The sensitivity was improved in the four models.ConclusionThe quick screen ABC-Scale covers three dimensions of ADL, BPSD and cognitive function with good efficiency in differentiating AD from MCI.