Project description:OrthoInspector is one of the leading software suites for orthology relations inference. In this paper, we describe a major redesign of the OrthoInspector online resource along with a significant increase in the number of species: 4753 organisms are now covered across the three domains of life, making OrthoInspector the most exhaustive orthology resource to date in terms of covered species (excluding viruses). The new website integrates original data exploration and visualization tools in an ergonomic interface. Distributions of protein orthologs are represented by heatmaps summarizing their evolutionary histories, and proteins with similar profiles can be directly accessed. Two novel tools have been implemented for comparative genomics: a phylogenetic profile search that can be used to find proteins with a specific presence-absence profile and investigate their functions and, inversely, a GO profiling tool aimed at deciphering evolutionary histories of molecular functions, processes or cell components. In addition to the re-designed website, the OrthoInspector resource now provides a REST interface for programmatic access. OrthoInspector 3.0 is available at http://lbgi.fr/orthoinspectorv3.
Project description:BackgroundVegetables of the genus Allium are widely consumed but remain poorly understood genetically. Genetic mapping has been conducted in intraspecific crosses of onion (Allium cepa L.), A. fistulosum and interspecific crosses between A. roylei and these two species, but it has not been possible to access genetic maps and underlying data from these studies easily.DescriptionAn online comparative genomics database, AlliumMap, has been developed based on the GMOD CMap tool at http://alliumgenetics.org. It has been populated with curated data linking genetic maps with underlying markers and sequence data from multiple studies. It includes data from multiple onion mapping populations as well as the most closely related species A. roylei and A. fistulosum. Further onion EST-derived markers were evaluated in the A. cepa x A. roylei interspecific population, enabling merging of the AFLP-based maps. In addition, data concerning markers assigned in multiple studies to the Allium physical map using A. cepa-A. fistulosum alien monosomic addition lines have been compiled. The compiled data reveal extensive synteny between onion and A. fistulosum.ConclusionsThe database provides the first online resource providing genetic map and marker data from multiple Allium species and populations. The additional markers placed on the interspecific Allium map confirm the value of A. roylei as a valuable bridge between the genetics of onion and A. fistulosum and as a means to conduct efficient mapping of expressed sequence markers in Allium. The data presented suggest that comparative approaches will be valuable for genetic and genomic studies of onion and A. fistulosum. This online resource will provide a valuable means to integrate genetic and sequence-based explorations of Allium genomes.
Project description:The largest extant RNA genomes are found in two diverse families of positive-strand RNA viruses, the animal Coronaviridae and the plant Closteroviridae. Comparative analysis of the viruses from the latter family reveals three levels of gene conservation. The most conserved gene module defines RNA replication and is shared with plant and animal viruses in the alphavirus-like superfamily. A module of five genes that function in particle assembly and transport is a hallmark of the family Closteroviridae and was likely present in the ancestor of all three closterovirus genera. This module includes a homologue of Hsp70 molecular chaperones and three diverged copies of the capsid protein gene. The remaining genes show dramatic variation in their numbers, functions, and origins among closteroviruses within and between the genera. Proteins encoded by these genes include suppressors of RNA silencing, RNAse III, papain-like proteases, the AlkB domain implicated in RNA repair, Zn-ribbon-containing protein, and a variety of proteins with no detectable homologues in the current databases. The evolutionary processes that have shaped the complex and fluid genomes of the large RNA viruses might be similar to those that have been involved in evolution of genomic complexity in other divisions of life.
Project description:The fission yeast clade--comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus--occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.
Project description:Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size and complexity. Such studies are particularly fruitful in large genomes, and useful mainly in crop plants where they provide a rich source of molecular markers or information on indispensable genomic components (e.g., telomeres, centromeres, or ribosomal RNA genes). Surprisingly, in Allium species, a comprehensive comparative study of repeats is lacking. Here we provide such a study of two economically important species, Allium cepa (onion), and A. sativum (garlic), and their distantly related A. ursinum (wild garlic). We present an overview and classification of major repeats in these species and have paid specific attention to sequence conservation and copy numbers of major representatives in each type of repeat, including retrotransposons, rDNA, or newly identified satellite sequences. Prevailing repeats in all three studied species belonged to Ty3/gypsy elements, however they significantly diverged and we did not detect them in common clusters in comparative analysis. Actually, only a low number of clusters was shared by all three species. Such conserved repeats were for example 5S and 45S rDNA genes and surprisingly a specific and quite rare Ty1/copia lineage. Species-specific long satellites were found mainly in A. cepa and A. sativum. We also show in situ localization of selected repeats that could potentially be applicable as chromosomal markers, e.g., in interspecific breeding.
Project description:Extended pluripotent or expanded potential stem cells (EPSCs) possess superior developmental potential to embryonic stem cells (ESCs). However, the molecular underpinning of EPSC maintenance in vitro is not well defined. We comparatively studied transcriptome, chromatin accessibility, active histone modification marks, and relative proteomes of ESCs and the two well-established EPSC lines to probe the molecular foundation underlying EPSC developmental potential. Despite some overlapping transcriptomic and chromatin accessibility features, we defined sets of molecular signatures that distinguish EPSCs from ESCs in transcriptional and translational regulation as well as metabolic control. Interestingly, EPSCs show similar reliance on pluripotency factors Oct4, Sox2, and Nanog for self-renewal as ESCs. Our study provides a rich resource for dissecting the regulatory network that governs the developmental potency of EPSCs and exploring alternative strategies to capture totipotent stem cells in culture.
Project description:The complete 1,751,377-bp sequence of the genome of the thermophilic archaeon Methanobacterium thermoautotrophicum deltaH has been determined by a whole-genome shotgun sequencing approach. A total of 1,855 open reading frames (ORFs) have been identified that appear to encode polypeptides, 844 (46%) of which have been assigned putative functions based on their similarities to database sequences with assigned functions. A total of 514 (28%) of the ORF-encoded polypeptides are related to sequences with unknown functions, and 496 (27%) have little or no homology to sequences in public databases. Comparisons with Eucarya-, Bacteria-, and Archaea-specific databases reveal that 1,013 of the putative gene products (54%) are most similar to polypeptide sequences described previously for other organisms in the domain Archaea. Comparisons with the Methanococcus jannaschii genome data underline the extensive divergence that has occurred between these two methanogens; only 352 (19%) of M. thermoautotrophicum ORFs encode sequences that are >50% identical to M. jannaschii polypeptides, and there is little conservation in the relative locations of orthologous genes. When the M. thermoautotrophicum ORFs are compared to sequences from only the eucaryal and bacterial domains, 786 (42%) are more similar to bacterial sequences and 241 (13%) are more similar to eucaryal sequences. The bacterial domain-like gene products include the majority of those predicted to be involved in cofactor and small molecule biosyntheses, intermediary metabolism, transport, nitrogen fixation, regulatory functions, and interactions with the environment. Most proteins predicted to be involved in DNA metabolism, transcription, and translation are more similar to eucaryal sequences. Gene structure and organization have features that are typical of the Bacteria, including genes that encode polypeptides closely related to eucaryal proteins. There are 24 polypeptides that could form two-component sensor kinase-response regulator systems and homologs of the bacterial Hsp70-response proteins DnaK and DnaJ, which are notably absent in M. jannaschii. DNA replication initiation and chromosome packaging in M. thermoautotrophicum are predicted to have eucaryal features, based on the presence of two Cdc6 homologs and three histones; however, the presence of an ftsZ gene indicates a bacterial type of cell division initiation. The DNA polymerases include an X-family repair type and an unusual archaeal B type formed by two separate polypeptides. The DNA-dependent RNA polymerase (RNAP) subunits A', A", B', B" and H are encoded in a typical archaeal RNAP operon, although a second A' subunit-encoding gene is present at a remote location. There are two rRNA operons, and 39 tRNA genes are dispersed around the genome, although most of these occur in clusters. Three of the tRNA genes have introns, including the tRNAPro (GGG) gene, which contains a second intron at an unprecedented location. There is no selenocysteinyl-tRNA gene nor evidence for classically organized IS elements, prophages, or plasmids. The genome contains one intein and two extended repeats (3.6 and 8.6 kb) that are members of a family with 18 representatives in the M. jannaschii genome.
Project description:Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles.
Project description:Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.