Project description:The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle, along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments.
Project description:Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.
Project description:Anthropogenic climate change ranks among the major global-scale threats to modern biodiversity. Extinction risks are known to increase via the interactions between rapid climatic alterations and environmentally-sensitive species traits that fail to adapt to those changes. Accumulating evidence reveals the influence of ecophysiological, ecological and phenological factors as drivers underlying demographic collapses that lead to population extinctions. However, the extent to which life-history traits influence population responses to climate change remains largely unexplored. The emerging 'cul-de-sac hypothesis' predicts that reptilian viviparity ('live-bearing' reproduction), a 'key innovation' facilitating historical invasions of cold climates, increases extinction risks under progressively warming climates compared to oviparous reproduction - as warming advances polewards/mountainwards, historically cold-climates shrink, leading viviparous species to face demographic collapses. We present the first large-scale test of this prediction based on multiple lizard radiations and on future projections of climate-based ecological niche models. Viviparous species were found to experience stronger elevational range shifts (and potentially increased extinctions) in coming decades, compared to oviparous lizards. Therefore, our analyses support the hypothesis's fundamental prediction that elevational shifts are more severe in viviparous species, and highlight the role that life-history adaptations play in the responses of biodiversity to ongoing climate change.
Project description:PremiseVariation in seed and seedling traits underlies how plants interact with their environment during establishment, a crucial life history stage. We quantified genetic-based variation in seed and seedling traits in populations of the annual plant Plantago patagonica across a natural aridity gradient, leveraging natural intraspecific variation to predict how populations might evolve in response to increasing aridity associated with climate change in the Southwestern U.S.MethodsWe quantified seed size, seed size variation, germination timing, and specific leaf area in a greenhouse common garden, and related these traits to the climates of source populations. We then conducted a terminal drought experiment to determine which traits were most predictive of survival under early-season drought.ResultsAll traits showed evidence of clinal variation-seed size decreased, germination timing accelerated, and specific leaf area increased with increasing aridity. Populations with more variable historical precipitation regimes showed greater variation in seed size, suggestive of past selection shaping a diversified bet-hedging strategy mediated by seed size. Seedling height, achieved via larger seeds or earlier germination, was a significant predictor of survival under drought.ConclusionsWe documented substantial interspecific trait variation as well as clinal variation in several important seed and seedling traits, yet these slopes were often opposite to predictions for how individual traits might confer drought tolerance. This work shows that plant populations may adapt to increasing aridity via correlated trait responses associated with alternative life history strategies, but that trade-offs might constrain adaptive responses in individual traits.
Project description:Microbial communities of boreal peatlands under climate change conditions: Does community structure indicate the dynamics of ecosystem function?
Project description:Predicting the extent and direction of species' range shifts is a major priority for scientists and resource managers. Seminal studies have fostered the notion that biological systems responding to climate change-impacted variables (e.g., temperature, precipitation) should exhibit poleward range shifts but shifts contrary to that expectation have been frequently reported. Understanding whether those shifts are indeed contrary to climate change predictions involves understanding the most basic mechanisms determining the distribution of species. We assessed the patterns of ecologically relevant temperature metrics (e.g., daily range, min, max) along the European Atlantic coast. Temperature metrics have contrasting geographical patterns and latitude or the grand mean are poor predictors for many of them. Our data suggest that unless the appropriate metrics are analysed, the impact of climate change in even a single metric of a single stressor may lead to range shifts in directions that would otherwise be classified as "contrary to prediction".
Project description:Studies have shown that the soaring demand for air conditioners in recent years is closely related to the worsening global warming; however, little evidence has been provided for China. This study uses weekly data of 343 Chinese cities to investigate how air conditioner sales respond to climate variability. We detected a U-shaped relationship between air-conditioning and temperature. An additional day with average temperature above 30°C increases weekly sales by 16.2%. Heterogeneity analysis shows that the adoption of air-conditioning is different for south and north China. By combining our estimates with shared socioeconomic pathway scenarios, we project China's mid-century air conditioner sales and the resulting electricity demand. Under the fossil-fueled development scenario, air conditioner sales in the Pearl River Delta would rise by 71% (65.7%-87.6%) in summer. On average, the per capita electricity demand for air-conditioning will surge by 28% (23.2%-35.4%) in China by mid-century.
Project description:The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is especially important in the southern part of Europe, where environmental change is expected to be more intense. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama) that show differences in their environmental conditions and biogeographical background. Seedling survival, growth and leaf phenological traits were selected as adaptive traits and were measured under simulated controlled climate change conditions in a growth chamber. Seedling survival was also tested under current conditions in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for 3 years, under two different irrigation schemes, where the same amount of water was distributed either frequently (once every week) or non-frequently (once in 20 days). The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, changes in the duration of the growing season of seedlings were recorded in the growth chamber, allowing them to avoid environmental stress and high selection pressure. Differences were observed between populations and provenances in terms of temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.
Project description:Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this important rainfall range, which typically include desert fringe ecosystems.