Project description:Lung ischemia-reperfusion injury (LIRI) is a prevalent occurrence in various pulmonary diseases and surgical procedures, including lung resections and transplantation. LIRI can result in systemic hypoxemia and multi-organ failure. Hydroxycitric acid (HCA), the primary acid present in the peel of Garcinia cambogia, exhibits anti-inflammatory, antioxidant, and anticancer properties. However, the effects of HCA on LIRI remain unknown. To investigate the impact of HCA on LIRI in mice, the mice were randomly divided into four groups: the control group, the I/R model group, and the I/R + low- or high-dose HCA groups. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia for 12 h followed by reoxygenation for 6 h to simulate in vitro LIRI. The results demonstrated that administration of HCA effectively attenuated lung injury, inflammation, and edema induced by ischemia reperfusion. Moreover, HCA treatment significantly reduced malondialdehyde (MDA) and reactive oxygen species (ROS) levels while decreasing iron content and increasing superoxide dismutase (SOD) levels after ischemia-reperfusion insult. Mechanistically, HCA administration significantly inhibited Hif-1α and HO-1 upregulation both in vivo and in vitro. We found that HCA could also alleviate endothelial barrier damage in H/R-induced HUVECs in a concentration-dependent manner. In addition, overexpression of Hif-1α counteracted HCA-mediated inhibition of H/R-induced endothelial cell ferroptosis. In summary, these results indicate that HCA alleviated LIRI by inhibiting oxidative stress and ferroptosis through the Hif-1α pathway.
Project description:Activating transcription factor 4 (ATF4) is one of the key effectors of endoplasmic reticulum stress (ERS), ATF4/CHOP pathway-mediated ERS plays an important role in the progression of acute kidney disease (AKI). We have previously reported that Vitamin D receptor (VDR) exert renoprotection in rodent AKI models. However, whether ATF4, as well as ERS, is involved in the protective effect of VDR in ischemia-reperfusion (I/R) induced AKI is unknown. Herein, we showed that VDR agonist paricalcitol and VDR overexpression alleviated I/R-induced renal injury and cells apoptosis with decreased ATF4 and attenuated ERS, while VDR deletion significantly resulted in further increased ATF4, more drastic ERS and renal injury in I/R mice models. In addition, paricalcitol remarkably reduced Tunicamycin (TM) induced ATF4 and ERS with attenuated renal injury, while VDR deletion aggravated the above changes in TM mice models. Moreover, overexpression of ATF4 partially abolished the effect of paricalcitol against TM-induced ERS and apoptosis, while inhibition of ATF4 enhanced the protective effect of paricalcitol. Bioinformatics analysis indicated potential VDR binding sites on ATF4 promotor sequence which were further confirmed by ChIP-qPCR and dual-luciferase reporter gene assay. In conclusion, VDR attenuated I/R-induced AKI by suppressing ERS partly via transcriptional regulation of ATF4.
Project description:BackgroundHepatic ischemia/reperfusion (I/R) injury is a major cause of complications in clinical liver surgery. AXL receptor tyrosine kinase (AXL) is a member of the TAM receptor tyrosine kinase family (TYRO3, AXL, and MERTK). Our previous study has shown that AXL expression was markedly upregulated in liver transplantation patients. However, the underlying mechanism of AXL in hepatic I/R injury remains unclear.MethodsA mouse liver warm I/R model and a primary hepatocyte hypoxia/reoxygenation model were established to investigate the role of AXL activation and ferroptosis in hepatic I/R injury by pretreating with recombinant mouse growth arrest-specific protein 6 (AXL activator) or R428 (AXL inhibitor). Moreover, we used LY294002 (phosphatidylinositol 3-kinase [PI3K] inhibitor) to evaluate the relationship between the PI3K/AKT (the Ser and Thr kinase AKT) pathway and ferroptosis in hepatic I/R injury.ResultsHepatic I/R injury decreased phosphorylation AXL expression and enhanced ferroptosis in liver transplantation patients and hepatic I/R-subjected mice. AXL activation attenuated lipid peroxidation and ferroptosis in hepatic I/R injury in vivo and in vitro. Inhibition of AXL activation exacerbated liver pathological damage and liver dysfunction, as well as iron accumulation and lipid peroxidation in hepatic I/R injury. Mechanistically, activated growth arrest-specific protein 6/AXL and its downstream PI3K/AKT signaling pathway inhibited ferroptosis during hepatic I/R injury.ConclusionsAXL activation protects against hepatic I/R injury by preventing ferroptosis through the PI3K/AKT pathway. This study is the first investigation on the AXL receptor and ferroptosis, and activating AXL to mitigate ferroptosis may be an innovative therapeutic strategy to combat hepatic I/R injury.
Project description:Retinal ischemia-reperfusion (RIR) injury caused by high intraocular pressure (IOP) is an important risk factor contributing to retinal ganglion cell (RGC) death, eventually causing blindness. A key progressive pathological process in the development of RIR is the death of RGCs. However, the detailed mechanisms underlying RGC death caused by RIR have not yet been clearly elucidated, and effective treatments are lacking. Ferroptosis is a recently defined form of programmed cell death that is closely related to organ injury. Melatonin (MT) is a promising neuroprotective agent, but its effects on RIR injury remain unclear. In this study, murine models of acute ocular hypertension and oxygen and glucose deprivation/reoxygenation (OGD/R) model were adopted to simulate retinal ischemia. MT alleviated retinal damage and RGC death in RIR mice, significantly attenuating RIR-induced ferroptosis. Furthermore, MT reduced the expression of p53, a master regulator of ferroptosis pathways, and the upregulation of p53 promoted ferroptosis and largely abolished the neuroprotective effects of MT. Mechanistically, the overexpression (OE) of p53 suppressed the expression of the solute carrier family 7 member 11 (Slc7a11), which was accompanied by increased 12-lipoxygenase (Alox12) expression, triggering retinal ferroptosis. Moreover, MT-ameliorated apoptosis, neuroinflammation and microglial activation were observed. In summary, MT conferred neuroprotection against RIR injury by inhibiting p53-mediated ferroptosis. These findings indicate that MT is a retina-specific ferroptosis inhibitor and a promising therapeutic agent for retinal neuroprotection.
Project description:Tanshinone IIA (TSN) extracted from danshen (Salvia miltiorrhiza) could protect cardiomyocytes against myocardial ischemia/reperfusion injury (IRI), however the underlying molecular mechanisms of action remain unclear. The aim of the present study was to identify the protective effects of TSN and its mechanisms of action through in vitro studies. An anoxia/reoxygenation (A/R) injury model was established using H9c2 cells to simulate myocardial IRI in vitro. Before A/R, H9c2 cardiomyoblasts were pretreated with 8 µM TSN or 10 µM ferrostatin‑1 (Fer‑1) or erastin. The cell counting kit 8 (CCK‑8) and lactate dehydrogenase (LDH) assay kit were used to detect the cell viability and cytotoxicity. The levels of total iron, glutathione (GSH), glutathione disulfide (GSSG), malondialdehyde (MDA), ferrous iron, caspase‑3 activity, and reactive oxygen species (ROS) were assessed using commercial kit. The levels of mitochondrial membrane potential (MMP), lipid ROS, cell apoptosis, and mitochondrial permeability transition pore (mPTP) opening were detected by flow cytometry. Transmission electron microscopy (TEM) was used to observed the mitochondrial damage. Protein levels were detected by western blot analysis. The interaction between TSN and voltage‑dependent anion channel 1 (VDAC1) was evaluated by molecular docking simulation. The results showed that pretreatment with TSN and Fer‑1 significantly decreased cell viability, glutathione peroxidase 4 (GPX4) protein and GSH expression and GSH/GSSG ratio and inhibited upregulation of LDH activity, prostaglandin endoperoxide synthase 2 and VDAC1 protein expression, ROS levels, mitochondrial injury and GSSG induced by A/R. TSN also effectively inhibited the damaging effects of erastin treatment. Additionally, TSN increased MMP and Bcl‑2/Bax ratio, while decreasing levels of apoptotic cells, activating Caspase‑3 and closing the mPTP. These effects were blocked by VDAC1 overexpression and the results of molecular docking simulation studies revealed a direct interaction between TSN and VDAC1. In conclusion, TSN pretreatment effectively attenuated H9c2 cardiomyocyte damage in an A/R injury model and VDAC1‑mediated ferroptosis and apoptosis served a vital role in the protective effects of TSN.
Project description:Reactive oxygen species (ROS) and intracellular iron levels are critical modulators of lipid peroxidation that trigger iron-dependent non-apoptotic ferroptosis in myocardial ischemia-reperfusion (I/R) injury. Histochrome (HC), with a potent antioxidant moiety and iron-chelating capacity, is now available in clinical practice. However, limited data are available about the protective effects of HC on ferroptotic cell death in myocardial I/R injury. In this study, we investigated whether the intravenous administration of HC (1 mg/kg) prior to reperfusion could decrease myocardial damage by reducing ferroptosis. Rats undergoing 60 min of ischemia and reperfusion were randomly divided into three groups as follows: (1) Sham, (2) I/R control, and (3) I/R + HC. Serial echocardiography up to four weeks after I/R injury showed that intravenous injection of HC significantly improved cardiac function compared to the I/R controls. In addition, the hearts of rats who received intravenous injection of HC exhibited significantly lower cardiac fibrosis and higher capillary density. HC treatment decreased intracellular and mitochondrial ROS levels by upregulating the expression of nuclear factor erythroid 2-related factor (Nrf2) and its downstream genes. HC also inhibited erastin- and RSL3-induced ferroptosis in rat neonatal cardiomyocytes by maintaining the intracellular glutathione level and through upregulated activity of glutathione peroxidase 4. These findings suggest that early intervention with HC before reperfusion rescued myocardium from I/R injury by preventing ferroptotic cell death. Therefore, HC is a promising therapeutic option to provide secondary cardioprotection in patients who undergo coronary reperfusion therapy.
Project description:IntroductionFerroptosis is an iron-dependent regulated necrosis and has been proven to contribute to the progress of acute kidney injury (AKI). Quercetin (QCT), a natural flavonoid which is commonly found in numerous fruits and vegetables, has extensive pharmacological effects, such as anti-oxidant, anti-inflammatory and anti-senescence effects.ObjectivesThis study aims to explain whether ferroptosis is a therapeutic strategy to AKI, and to explore the effect of QCT on AKI ferroptosis.MethodsNRK-52E cells and HK-2 cells were used for in vitro ferroptosis studies. Morphology of cells was detected by transmission electron microscopy. Lipid ROS was assayed using flow cytometry. In vivo, AKI was induced by ischemia-reperfusion (I/R) or folic acid (FA). To explore the molecular mechanisms, RNA-sequence analysis was performed. Transwell was used to detect macrophage migration.ResultsWe discovered that quercetin (QCT), a natural flavonoid, inhibited ferroptosis in renal proximal tubular epithelial cells. QCT blocked the typical morphologic changes of ferroptotic cells by reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing the levels of glutathione (GSH). Moreover, QCT ameliorated AKI induced by I/R or FA. RNA-sequence analysis highlighted activation transcription factor 3 (ATF3), as it was the dominant one among all the 299 down-regulated genes by QCT. Knockdown of ATF3 could significantly increase the levels of SLC7A11, GPX4 and increased the cell viability. In addition, ferroptotic cells were found to be extremely pro-inflammatory by recruiting macrophages through CCL2, while QCT inhibited the chemotaxis of macrophages induced by ferroptosis in AKI.ConclusionsCollectively, these results identify QCT as a ferroptosis inhibitor and provide new therapeutic strategies for diseases related to ferroptosis.
Project description:ObjectiveIschemic stroke is a leading cause of death and disability in individuals worldwide. Cerebral ischemia-reperfusion injury (CIRI) typically results in severe secondary injury and complications following reperfusion therapy. Microglia play critical roles in the inflammatory reaction of CIRI. However, less attention has been given to microglial death in this process. Our study aims to explore microglial death in CIRI and the effects and mechanism of minocycline treatment on microglia.MethodsA middle cerebral artery occlusion (MCAO) model was applied to induce CIRI in rats. At 0 h, 24 h and 48 h post-operation, rats were intraperitoneally injected with 45 mg/kg minocycline. Neurological deficit scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, assessment of activated microglia and examination of mitochondrial structure were conducted and checked at 72 h after reperfusion. Additionally, an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R) model was established. BV-2 cells were treated with various pharmacological inhibitors of cell death or minocycline. Cell viability, lipid peroxidation, mitochondrial structure and function, and labile Fe2+ and ferroptosis-associated gene/protein levels were measured. Hemin was used for further validation after transcriptome analysis.ResultsIn the MCAO and OGD/R models, ferroptosis was identified as a major form of microglial death. Minocycline inhibited microglia ferroptosis by reducing HO-1 expression. In addition, minocycline improved mitochondrial membrane potential, mitochondrial structures and microglial survival in vivo. Minocycline also decreased labile Fe2+ levels, lipid peroxidation, and expression of ferritin heavy chain (FTH) and it improved mitochondrial structure and function in vitro. Upregulation of HO-1 counteracted the protective effect of minocycline.ConclusionFerroptosis is a major form of microglial death in CIRI. The protective mechanism of minocycline in CIRI partially hinges on its ability to effectively ameliorate microglia ferroptosis by downregulating HO-1 expression. Consequently, targeting microglia ferroptosis is a promising treatment for CIRI.
Project description:This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.