Project description:This study measured the cytokine, cellular and transcriptomic response to RSV and compared these between preterm and term infants CBMC responses
Project description:Preterm infants are highly susceptible to sustained lung inflammation, which may be triggered by exposure to multiple environmental cues such as supplemental oxygen (O2) and infections. The underlying mechanisms are still poorly understood. The hypothesis of this study is that dysregulated macrophage activation is a key feature leading to inflammation-mediated development of bronchopulmonary dysplasia (BPD) in preterm infants.
Cord blood samples of preterm infants (n=14) and term infants (n=19) as well as peripheral blood from healthy adults (n=17) were collected. Age-dependent differences in immune responses of monocyte-derived Mä from preterm infants were characterized and compared to term infants and adults after lipopolysaccharide (LPS) exposure.
Project description:The placenta is metabolically active and supports the growth of the fetus. We hypothesize that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may result in spontaneous preterm birth (SPTB). To explore this hypothesis, we performed a nested cased control study of metabolomic signatures in placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (?38 weeks gestation). To control for the effects of gestational age on placenta metabolism, we also studied a subset of metabolites in non-laboring preterm and term Rhesus monkeys. Comprehensive quantification of metabolites demonstrated a significant elevation in the levels of amino acids, prostaglandins, sphingolipids, lysolipids, and acylcarnitines in SPTB placenta compared to term placenta. Additional quantification of placental acylcarnitines by tandem mass spectrometry confirmed the significant elevation in SPTB human, with no significant differences between midgestation and term placenta in Rhesus macaque. Fatty acid oxidation as measured by the flux of 3H-palmitate in SPTB placenta was lower than term. Collectively, significant and biologically relevant alterations in the placenta metabolome were identified in SPTB placenta. Altered acylcarnitine levels and fatty acid oxidation suggest that disruption in normal substrate metabolism is associated with SPTB.
Project description:In adults, wakefulness can be markedly prolonged at the expense of sleep, e.g. to stay vigilant in the presence of a stressor. These extra-long wake bouts result in a heavy-tailed distribution (highly right-skewed) of wake but not sleep durations. In infants, the relative importance of wakefulness and sleep are reversed, as sleep is necessary for brain maturation. Here, we tested whether these developmental pressures are associated with the unique regulation of sleep-wake states. In 175 infants of 28-40 weeks postmenstrual age (PMA), we monitored sleep-wake states using electroencephalography and behavior. We constructed survival models of sleep-wake bout durations and the effect of PMA and other factors, including stress (salivary cortisol), and examined whether sleep is resilient to nociceptive perturbations (a clinically necessary heel lance). Wake durations followed a heavy-tailed distribution as in adults and lengthened with PMA and stress. However, differently from adults, active sleep durations also had a heavy-tailed distribution, and with PMA, these shortened and became vulnerable to nociception-associated awakenings. Sleep bouts are differently regulated in infants, with especially long active sleep durations that could consolidate this state's maturational functions. Curtailment of sleep by stress and nociception may be disadvantageous, especially for preterm infants given the limited value of wakefulness at this age. This could be addressed by environmental interventions in the future.
Project description:We aimed to assess the determinants of diaphragmatic function in term and preterm infants. 149 infants (56 term; 93 preterm, of whom 14 were diagnosed with bronchopulmonary dysplasia-BPD) were studied before discharge. Diaphragmatic function was assessed by measurement of the maximum transdiaphragmatic pressure (Pdimax)-a measure of diaphragmatic strength, and the pressure-time index of the diaphragm (PTIdi)-a measure of the load-to-capacity ratio of the diaphragm. The Pdimax was higher in term than preterm infants without BPD (90.1 ± 16.3 vs 81.1 ± 11.8 cmH2O; P = 0.001). Term-born infants also had lower PTIdi compared to preterms without BPD (0.052 ± 0.014 vs 0.060 ± 0.017; P = 0.006). In term and preterm infants without BPD, GA was the most significant predictor of Pdimax and PTIdi, independently of the duration of mechanical ventilation and oxygen support. In infants with GA < 32 weeks (n = 30), the Pdimax was higher in infants without BPD compared to those with BPD (76.1 ± 11.1 vs 65.2 ± 11.9 cmH2O; P = 0.015). Preterms without BPD also had lower PTIdi compared to those with BPD (0.069 ± 0.016 vs 0.109 ± 0.017; P < 0.001). In this subgroup, GA was the only significant independent determinant of Pdimax, while BPD and the GA were significant determinants of the PTIdi. Conclusions: Preterm infants present lower diaphragmatic strength and impaired ability to sustain the generated force over time, which renders them prone to diaphragmatic fatigue. In very preterm infants, BPD may further aggravate diaphragmatic function. What is Known: • The diaphragm of preterm infants has limited capacity to undertake the work of breathing effectively. • The maximum transdiaphragmatic pressure (a measure of diaphragmatic strength) and the pressure-time index of the diaphragm (a measure of the load-to-capacity ratio of the muscle) have not been extensively assessed in small infants. What is New: • Preterm infants have lower diaphragmatic strength and impaired ability to sustain the generated force over time, which renders them prone to diaphragmatic fatigue. • In very preterm infants, bronchopulmonary dysplasia may further impair diaphragmatic function.
Project description:The present study investigated the composition, abundance, and diversity of gut microbes in full-term and late-preterm infants from a medical center in eastern China. A total of 144 genomes of stool samples were captured for 16S rRNA metagenomic analyses. A high abundance of commensal intestinal bacteria was detected in these samples such as Phocaeicola vulgatus, Escherichia coli, and Faecalibacterium prausnitzii, indicating a relatively consistent diversity of gut microbes in the present full-term infants aged 38-40 weeks. However, late preterm infants (n = 50) with mandatory antimicrobials feeding exhibited lower diversity but a higher composition of opportunistic pathogens such as Enterococcus species. Centralized on the situation, we explored the regulatory effect of Clostridium butyricum as probiotics on these late preterm infants. The consumption of C. butyricum did not restore the composition of gut microbes altered by antimicrobials to normal levels, although several opportunistic pathogens decreased significantly after probiotic therapy including Staphylococcus aureus, Sphingomonas echinoides, and Pseudomonas putida. We also compared the effects of day-fed versus night-fed probiotics. Intriguingly, the nighttime feeding showed a higher proportion of C. butyricum compared with probiotic day-feeding. Finally, fecal metabolome and metabolites were analyzed in late preterm infants with (n = 20) or without probiotic therapy (n = 20). The KEGG enrichment analysis demonstrated that vitamin digestion and absorption, synaptic vesicle cycle, and biotin metabolism were significantly increased in the probiotic-treated group, while MSEA indicated that a series of metabolism were significantly enriched in probiotic-treated infants including glycerolipid, biotin, and lysine, indicating the complex effects of probiotic therapy on glutathione metabolism and nutrients digestion and absorption in late preterm infants. Overall, this study provided metagenomic and metabolomic profile of the gut microbes in full-term newborns and late preterm infants in eastern China. Further studies are needed to support and elucidate the role of probiotic feeding in late preterm infants with mandatory antimicrobial treatment.
Project description:Rifampin is active against methicillin-resistant staphylococcal species and tuberculosis (TB). We performed a multicenter, prospective pharmacokinetic (PK) and safety study of intravenous rifampin in infants of <121 days postnatal age (PNA). We enrolled 27 infants; the median (range) gestational age was 26 weeks (23 to 41 weeks), and the median PNA was 10 days (0 to 84 days). We collected 102 plasma PK samples from 22 of the infants and analyzed safety data from all 27 infants. We analyzed the data using a population PK approach. Rifampin PK was best characterized by a one-compartment model; drug clearance increased with increasing size (body weight) and maturation (PNA). There were no adverse events related to rifampin. Simulated weight and PNA-based intravenous dosing regimens administered once daily (<14 days PNA, 8 mg/kg; ≥14 days PNA, 15 mg/kg) in infants resulted in comparable exposures to adults receiving therapeutic doses of rifampin against staphylococcal infections and TB. (This study has been registered at ClinicalTrials.gov under identifier NCT01728363.).
Project description:ObjectiveTo describe relationship between cord blood (representing fetal) myo-inositol concentrations and gestational age (GA) and to determine trends of blood concentrations in enterally and parenterally fed infants from birth to 70 days of age.Design/methodsSamples were collected in 281 fed or unfed infants born in 2005 and 2006. Myo-inositol concentrations were displayed in scatter plots and analyzed with linear regression models of natural log-transformed values.ResultsIn 441 samples obtained from 281 infants, myo-inositol concentrations varied from nondetectable to 1494 μmol/L. Cord myo-inositol concentrations decreased an estimated 11.9% per week increase in GA. Postnatal myo-inositol concentrations decreased an estimated 14.3% per week increase in postmenstrual age (PMA) and were higher for enterally fed infants compared to unfed infants (51% increase for fed vs. unfed infants).ConclusionsFetal myo-inositol concentrations decreased with increasing GA. Postnatal concentrations decreased with increasing PMA and were higher among enterally fed than unfed infants.
Project description:Clindamycin may be active against methicillin-resistant Staphylococcus aureus, a common pathogen causing sepsis in infants, but optimal dosing in this population is unknown. We performed a multicenter, prospective pharmacokinetic (PK) and safety study of clindamycin in infants. We analyzed the data using a population PK analysis approach and included samples from two additional pediatric trials. Intravenous data were collected from 62 infants (135 plasma PK samples) with postnatal ages of <121 days (median [range] gestational age of 28 weeks [23 to 42] and postnatal age of 17 days [1 to 115]). In addition to body weight, postmenstrual age (PMA) and plasma protein concentrations (albumin and alpha-1 acid glycoprotein) were found to be significantly associated with clearance and volume of distribution, respectively. Clearance reached 50% of the adult value at PMA of 39.5 weeks. Simulated PMA-based intravenous dosing regimens administered every 8 h (≤32 weeks PMA, 5 mg/kg; 32 to 40 weeks PMA, 7 mg/kg; >40 to 60 weeks PMA, 9 mg/kg) resulted in an unbound, steady-state concentration at half the dosing interval greater than a MIC for S. aureus of 0.12 μg/ml in >90% of infants. There were no adverse events related to clindamycin use. (This study has been registered at ClinicalTrials.gov under registration no. NCT01728363.).